Solid particle erosion behavior of melt-infiltrated SiC/SiC ceramic matrix composites (CMCs) in a simulated turbine engine environment

Author(s):  
Ragav P. Panakarajupally ◽  
Farhan Mirza ◽  
Joseph El Rassi ◽  
Gregory N. Morscher ◽  
Frank Abdi ◽  
...  
Author(s):  
M. J. Presby ◽  
C. Gong ◽  
S. Kane ◽  
N. Kedir ◽  
A. Stanley ◽  
...  

Abstract Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2-D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to kinetic energy of impacting particles in conjunction with nominal density, matrix hardness and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
M. J. Presby ◽  
C. Gong ◽  
S. Kane ◽  
N. Kedir ◽  
A. Stanley ◽  
...  

Abstract Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to the kinetic energy of impacting particles in conjunction with nominal density, matrix hardness, and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.


Author(s):  
N. Kedir ◽  
C. Gong ◽  
L. Sanchez ◽  
M. J. Presby ◽  
S. Kane ◽  
...  

Erosion behavior of a large number of gas-turbine grade ceramic matrix composites (CMCs) was assessed using fine to medium grain garnet erodents at velocities of 200 and 300 m/s at ambient temperature. The CMCs used in the current work were comprised of nine different SiC/SiCs, one SiC/C, one C/SiC, one SiC/MAS, and one oxide/oxide. Erosion damage was quantified with respect to erosion rate and the damage morphology was assessed via SEM and optical microscopy in conjunction with 3-D image mapping. The CMCs response to erosion appeared to be very complicated due to their architectural complexity, multiple material constituents, and presence of pores. Effects of architecture, material constituents, density, matrix hardness, and elastic modulus of the CMCs were taken into account and correlated to overall erosion behavior. The erosion of monolithic ceramics such as silicon carbide and silicon nitrides was also examined to gain a better understanding of the governing damage mechanisms for the CMC material systems used in this work.


Sign in / Sign up

Export Citation Format

Share Document