Solid Particle Erosion Behavior of Metal Matrix Composites

1996 ◽  
Vol 30 (15) ◽  
pp. 1670-1682 ◽  
Author(s):  
N. Miyazaki ◽  
S. Funakura
2018 ◽  
Vol 188 ◽  
pp. 03002
Author(s):  
Ekaterini Chantziara ◽  
Konstantinos Lentzaris ◽  
Angeliki G. Lekatou ◽  
Alexander E. Karantzalis

The main concept behind this work is to further enhance the attractive properties of aluminum by fabricating Al - WC composites and evaluating them in terms of their solid particle erosion response. Aluminum Matrix Composites (AMCs) were produced by the addition of submicron sized WC particles (up to 2.5vol %) into a melt of Al1050. Casting was assisted by the use of K2TiF6 as a wetting agent and mechanical stirring in order to minimize particle clustering. Extensive presence of in-situ intermetallic phases (Al4W, Al5W, Al12W, Al3(Ti,W), Al3Ti) was observed in the cast products. Particle distribution was reasonably uniform comprising both clusters and isolated particles. Solid particle erosion experiments were carried out for impact angles of 30°, 60° and 90°, using angular Al2O3 particles as the eroding medium and under 5 bar spraying pressure. The erosion rate was calculated by measuring the mass loss and the eroded surfaces were examined with SEM-EDX. Increased erosion resistance was observed for low particle additions (≤ 1.0 vol%WC). Finally, a possible erosion mechanism was proposed based on the material’s microstructural and morphological characteristics.


Sign in / Sign up

Export Citation Format

Share Document