Impact damage modeling in woven composites with two-level Parametrically-Upscaled Continuum Damage Mechanics Models (PUCDM)

Author(s):  
Xiaofan Zhang ◽  
Yanrong Xiao ◽  
Christopher S. Meyer ◽  
Daniel J. O’Brien ◽  
Somnath Ghosh
2011 ◽  
Vol 488-489 ◽  
pp. 759-762
Author(s):  
L.Y. Li ◽  
M.H. Aliabadi ◽  
Pi Hua Wen

A Meshfree approach for continuum damage modeling of 3D orthogonal woven composites is presented. Two different shape function constructions, Radial basis (RB) function and Moving kriging (MK) interpolation, are utilized corresponding with Galerkin method in the Meshfree approach. The failure of two different unit cell models, straight-edge and smooth fabric unit cell model respectively, is compared.


2015 ◽  
Vol 06 (03) ◽  
pp. 1550009 ◽  
Author(s):  
L. Li ◽  
F. Aliabadi ◽  
P. H. Wen

Application of meshfree Galerkin method to homogenization and Continuum Damage Mechanics (CDM) analysis of plain woven composites is presented. Three types of meshfree formulations are developed and include: radial basis function, moving least squares and moving Kriging. Three benchmark examples are used to demonstrated the efficiency of the meshfree formulation as well as compare the performance of the three shape functions. Non-linear stress–strain relationhip of unit cellusing the three shape functions are assessed with two benchmark examples of CDM model.


2002 ◽  
Vol 55 (5) ◽  
pp. 481-493 ◽  
Author(s):  
GZ Voyiadjis ◽  
AN Palazotto ◽  
X-L Gao

Abstract Damage modeling of metallic materials under high strain rate loading conditions is reviewed. The emphasis is on the modeling efforts based on continuum damage mechanics, although many important references dealing with general aspects of dynamic behavior of materials are also discussed. Relevant issues on the use of continuum damage mechanics and on the damage modeling of composites are addressed as well. This review article deals with 134 references


2018 ◽  
Vol 774 ◽  
pp. 498-503
Author(s):  
L. Li ◽  
Pi Hua Wen ◽  
Ferri M.H. Aliabadi

This paper presents continuum damage mechanics analysis of twill woven composites. Element Free Galerkin formulation is utilized and enriched with mathematical representation of twill composite in a way that includes details of the wrap/weft/matrix without the requirement of a detailed mesh of individual components. Continuum damage mechanics formulation is developed within the meshfree context and applied to the twill composite.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


Author(s):  
A Nayebi ◽  
H Rokhgireh ◽  
M Araghi ◽  
M Mohammadi

Additively manufactured parts often comprise internal porosities due to the manufacturing process, which needs to be considered in modelling their mechanical behaviour. It was experimentally shown that additively manufactured parts’ tensile and compressive mechanical properties are different for various metallic alloys. In this study, isotropic continuum damage mechanics is used to model additively manufactured alloys’ tension and compression behaviours. Compressive stress components can shrink discontinuities present in additively manufactured alloys. Therefore, the crack closure effect was employed to describe different behaviours during uniaxial tension and compression tests. A finite element model embedded in an ABAQUS’s UMAT format was developed to account for the isotropic continuum damage mechanics model. The numerical results of tension and compression tests were compared with experimental observations for additively manufactured maraging steel, AlSi10Mg and Ti-6Al-4V. Stress–strain curves in tension and compression of these alloys were obtained using the continuum damage mechanics model and compared well with the experimental results.


2017 ◽  
Vol 38 (1) ◽  
pp. 25-30
Author(s):  
Yan-Feng Li ◽  
Zhisheng Zhang ◽  
Chenglin Zhang ◽  
Jie Zhou ◽  
Hong-Zhong Huang

Abstract This paper deals with the creep characteristics of the aircraft turbine disc material of nickel-base superalloy GH4169 under high temperature. From the perspective of continuum damage mechanics, a new creep life prediction model is proposed to predict the creep life of metallic materials under both uniaxial and multiaxial stress states. The creep test data of GH4169 under different loading conditions are used to demonstrate the proposed model. Moreover, from the perspective of numerical simulation, the test data with analysis results obtained by using the finite element analysis based on Graham creep model is carried out for comparison. The results show that numerical analysis results are in good agreement with experimental data. By incorporating the numerical analysis and continuum damage mechanics, it provides an effective way to accurately describe the creep damage process of GH4169.


Sign in / Sign up

Export Citation Format

Share Document