Effect of strain rate and filler size on mechanical behavior of a Cu filled elastomer based composite

2016 ◽  
Vol 127 ◽  
pp. 185-192 ◽  
Author(s):  
Sudhi Oberoi ◽  
Dipali Sonawane ◽  
Praveen Kumar
2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


2019 ◽  
Vol 158 ◽  
pp. 131-140 ◽  
Author(s):  
Zhemin Jia ◽  
Guoqing Yuan ◽  
Xiaoping Feng ◽  
Yun Zou

Author(s):  
Nejc Novak ◽  
Matej Vesenjak ◽  
Masatoshi Nishi ◽  
Shigeru Tanaka ◽  
Kazuyuki Hokamoto ◽  
...  

2020 ◽  
Vol 54 (30) ◽  
pp. 4807-4819 ◽  
Author(s):  
AR Shamaei-Kashani ◽  
MM Shokrieh

In the present research, effects of applying strain rate on the mechanical behavior of single-lap glass/CNF/epoxy composite bolted joints including, damage initiation bearing stress, 2% offset bearing strength, ultimate bearing strength, bearing chord stiffness, ultimate bearing strain, and energy absorption were studied. To this end, a comprehensive experimental program was conducted. The protruding head bolt was used, the clearance was considered to be near fit and a finger-tight bolt condition was applied to all joints. The dimensions of joints were chosen to promote the bearing failure mode based on the ASTM standard. Four types of single-lap bolted joints (SLJs) with lay-ups of [–45/0/45/90]s and [90/–452/45]s with and without CNFs were tested at strain rates in the range of 0.0048 s−1 to 0.89 s−1. Unlike the available experimental results, the results obtained by the present experiments showed that the strain rate has a significant effect on all the above-mentioned mechanical parameters of SLJs. Also, it was shown that employing CNFs improved the mechanical parameters of SLJs under quasi-static and dynamic strain rates.


2007 ◽  
Vol 340-341 ◽  
pp. 1079-1084 ◽  
Author(s):  
Tao Suo ◽  
Yu Long Li ◽  
Yuan Yong Liu

In this paper, the mechanical behavior of a PMMA used as the windshield of aircraft was tested. The experiments were finished under two quasi-static strain rates and a high strain rate with the testing temperature from 299K to 373K. The results show that the mechanical property of this PMMA depends heavily on the testing temperature. The Young’s modulus and flow stress were found to decrease with increasing temperature at low strain rate. At the strain rate of 10-1 1/s, strain softening was observed under all experiment temperatures. At high strain rate, with the temperature increasing, the flow stress decreases remarkably while the failure strain increases, and the strain soften was also observed at the temperature above 333K. Comparing the experiments results at same temperature, it was found the flow stress increases with the rising strain rate. The predictions of the mechanical behavior using the ZWT theoretical model have a good agreement with experimental results in the strain range of 8%.


2017 ◽  
Vol 696 ◽  
pp. 348-359 ◽  
Author(s):  
M.A. Valdes-Tabernero ◽  
R. Sancho-Cadenas ◽  
I. Sabirov ◽  
M.Yu Murashkin ◽  
I.A. Ovid’ko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document