Effects of multi-walled carbon nanotubes on char residue and carbothermal reduction reaction in ethylene propylene diene monomer composites at high temperature

2020 ◽  
Vol 186 ◽  
pp. 107916 ◽  
Author(s):  
Mengfei Guo ◽  
Jiang Li ◽  
Kun Xi ◽  
Yang Liu ◽  
Jianbo Ji ◽  
...  
2012 ◽  
Vol 184-185 ◽  
pp. 1221-1225
Author(s):  
Xiao Guang Zhang ◽  
Ying Jie Ji ◽  
Shi Gang Wang ◽  
Qing Lin Hou

Multi-walled carbon nanotubes (MWNTs) were used as filler to enhance thermal conductivity of Ethylene propylene diene monomer (EPDM) polymers. In order to study the thermal conductivity of the MWNTs/EPDM composites in three different directions, an experiment was conducted by the heat probe method. The results show the general average thermal conductivity of MWNTs/EPDM composites is 0.323 W/m•K,which is significantly higher than EPDM polymers. The maximum difference of thermal conductivity between two directions is 8.7% relative to the general average, indicating obvious anisotropic behavior.


2013 ◽  
Vol 716 ◽  
pp. 373-378
Author(s):  
Qian Zhang ◽  
Xin Bao Gao ◽  
Tian Peng Li

Carbon nanotube/expanded graphite composite material was prepared by expanding the mixture of multi-walled carbon nanotubes and expansible graphite under the condition of high temperature. The microstructure and composition was studied by using SEM and XRD. The study shows that the tubular structure of carbon nanotubes in the composite material is changed by high temperature expanding process, and the microstructure is different with different expanding temperature. When the expanding temperature was 900°C, carbon nanotubes transformed, then attached to the surface of expanded graphite flake, so carbon nanotubes and expanding graphite combined strongly; globular carbon nanotubes attached to the surface of expanded graphite flake at the temperature of 700°C, both were combined much more strongly; carbon nanotubes retained the tube structure at the temperature of 500°C, combination was looser due to the simple physical adsorption. The result shows that the choice of expanding temperature has an important effect on microstructure of carbon nanotube/expanded graphite composite material.


Sign in / Sign up

Export Citation Format

Share Document