Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride

2020 ◽  
Vol 200 ◽  
pp. 108424 ◽  
Author(s):  
Wondu Lee ◽  
Jooheon Kim
Author(s):  
Fuhua Jia ◽  
Emmanuel Oluwaseyi Fagbohun ◽  
Qianyu Wang ◽  
Duoyin Zhu ◽  
Jianling Zhang ◽  
...  

Soft Matter ◽  
2020 ◽  
Vol 16 (29) ◽  
pp. 6812-6818 ◽  
Author(s):  
Jung Keun Cho ◽  
Hanna Sun ◽  
Hee Won Seo ◽  
June-Young Chung ◽  
Mina Seol ◽  
...  

As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors, which could be enhanced by the composites with the different-shaped hybrid fillers.


RSC Advances ◽  
2019 ◽  
Vol 9 (13) ◽  
pp. 7388-7399 ◽  
Author(s):  
Yuyuan Zhang ◽  
Wei Gao ◽  
Yujing Li ◽  
Dehe Zhao ◽  
Hong Yin

The synergistic effect of h-BN/c-BN/EP on the enhancement of thermal conductivity of polymeric composites has been demonstrated.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2331
Author(s):  
Yi Wang ◽  
Wei Wu ◽  
Dietmar Drummer ◽  
Chao Liu ◽  
Florian Tomiak ◽  
...  

To solve the problem of excessive heat accumulation in the electronic packaging field, a novel series of hybrid filler (BN@CNT) with a hierarchical “line-plane” structure was assembled via a condensation reaction between functional boron nitride(f-BN) and acid treated carbon nanotubes (a-CNTs). The reactions with different mass ratios of BN and CNTs and the effect of the obtained hybrid filler on the composites’ thermal conductivity were studied. According to the results, BN@15CNT exhibited better effects on promoting thermal conductivity of polybenzoxazine(PBz) composites which were prepared via ball milling and hot compression. The thermally conductive coefficient value of PBz composites, which were loaded with 25 wt% of BN@15CNT hybrid fillers, reached 0.794 W· m−1· K−1. The coefficient value was improved to 0.865 W· m−1· K−1 with 15 wt% of BN@15CNT and 10 wt% of BN. Although CNTs were adopted, the PBz composites maintained insulation. Dielectric properties and thermal stability of the composites were also studied. In addition, different thermal conduction models were used to manifest the mechanism of BN@CNT hybrid fillers in enhancing thermal conductivity of PBz composites.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 666-684
Author(s):  
Chung-Feng Jeffrey Kuo ◽  
Jiong-Bo Chen ◽  
Po-Yen Chen ◽  
Min-Yan Dong

This study developed a nano-size filler as a thermally conductive filler for a silicone thermal pad (STP) by exfoliating hexagonal-boron nitride ( h-BN) with the chemical exfoliation-free radical polymerization method to produce boron nitride nanosheets (BNNSs). We used N,N-dimethylacrylamide as the intercalation agent. After polymerization, it became poly( N,N-dimethylacrylamide) to exfoliate the h-BN layer. BNNSs were taken as a single-filler and hybrid-fillers with Al2O3 and then compared with h-BN to investigate their effect on the silicone composite properties. As the free radical polymerization reaction time increased, the interlayer distance of BNNSs lengthened to 0.35 nm, while the thickness of h-BN sheets decreased. The X-ray diffractometer results showed how the h-BN (002) crystal plane was enhanced and displaced. The Fourier transform infrared spectra showed that the characteristic peaks of 1372 and 812 cm−1 were enhanced, and the Raman results showed that the E2 g displacement and full width at half maximum increased, thus validating the successful preparation of BNNSs. Based on the scanning electron microscope-transmission electron microscope results, BNNSs with 24-hour reaction time offered the best results with a thickness of 5 nm. The highest thermal conductivity reached 3.66 W m−1 K−1 with the addition of 50 wt% BNNSs, and tensile strength of up to 11.30 kg/cm2. Hybrid-fillers showed enhancement of thermal conductivity to 5.28 W m−1 K−1 and tensile strength to 7.32 kg cm−2. Finally, the STP showed that the volume resistance (>1010 Ω cm), withstand voltage (>10 kV mm−1), and flame resistance (V-0) of the STP prepared by this study comply with the industrial application specifications.


RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28851-28856 ◽  
Author(s):  
Zhenzhen Ou ◽  
Feng Gao ◽  
Huaijun Zhao ◽  
Shumeng Dang ◽  
Lingjian Zhu

The present work aims at studying the thermal and dielectric properties of addition-cure liquid silicone rubber (ALSR) matrix composites using boron nitride (BN) and aluminum nitride (AlN) as a hybrid thermal conductive filler.


Sign in / Sign up

Export Citation Format

Share Document