ptfe composites
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 63)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 2160 (1) ◽  
pp. 012013
Author(s):  
Dongya Yang ◽  
Wei Xue ◽  
Xinwen Xiong ◽  
Weitao Li ◽  
Rongtuo Sun ◽  
...  

Abstract In order to study the seal design problem of piston rings in Stirling engine, on the basis of filling PTFE with Nano-SiO2 and POB and preparing the GCr15 contact surface with square texture by HM20-I laser marking machine, experiments were carried out on LSR-2M wear tester by indirect weighing and in-situ observation methods. Optical microscope (OM) and scanning electron microscope (SEM) were used to observe the evolution of Nano-SiO2/POB-PTFE composites’ transfer film on contact surface. The results showed that the square texture would shorten the running-in and transitionary periods of the composites’ tribological process, accelerate into the stationary period. The formation process of the composites’ transfer film on the square textured contact surface was also different from smooth contact surface. Although the square texture would increase wear rate, its ability to store wear debris is more conducive to the formation of reliable, uniform and continuous transfer film with a same friction direction. Obviously, reasonable design of surface texture can effectively improve the wear resistance of sealing parts made of filling modified PTFE composites, thus providing theoretical guidance for the seal design of Stirling engine piston ring.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Xiaoman Xiong ◽  
Mohanapriya Venkataraman ◽  
Tao Yang ◽  
Jiří Militký ◽  
Jakub Wiener

This paper presents the preparation of aerogel/polytetrafluoroethylene (PTFE) microporous materials via needleless electrospray technique, by using an aqueous dispersion of polytetrafluoroethylene as the basic spinning liquid. Different contents of aerogel powders were applied to the spinning liquid for electrospraying to investigate the effect on the structural characteristics and various properties of the materials. Cross-section, surface morphology, and particle size distribution of the electrosprayed materials were examined. Surface roughness, hydrophobicity, and thermal conductivity were evaluated and discussed. The results showed that the electrosprayed aerogel/PTFE layers were compact and disordered stacking structures composed of spherical particles with a rough surface. As the aerogel content increased, the electrosprayed materials demonstrated increased surface roughness and improved surface hydrophobicity with a contact angle up to 147.88°. In addition, the successful achievement of thermal conductivity as low as 0.024 (W m−1 K−1) indicated a superior ability of the prepared aerogel/PTFE composites to prevent heat transfer. This study contributes to the field of development of aerogel/PTFE composites via electrospray technique, providing enhanced final performance for potential use as thermal and moisture barriers in textiles or electronic devices.


2021 ◽  
pp. 1-31
Author(s):  
Wei Sun ◽  
Jiaxin Ye ◽  
Xiaojun Liu ◽  
Kun Liu

Abstract Polytetrafluoroethylene (PTFE) has a low friction coefficient but poor wear resistance (k ~ 10−3 mm3/Nm) against various surfaces. Mechanical modeling suggests that the enhanced anti-wear performance of PTFE composites (k ~ 10−5 mm3/Nm) relies on load support by filler in the matrix. Recent studies found that tribochemical polarization of PTFE polymers triggered the formation of highly protective transfer film, thus resulting in an exceptionally low wear (k ~ 10−7 mm3/Nm) in certain composites. However, atomistic interaction was believed to play an important role in the known anti-wear mechanisms, which has yet to be fully described. Here, environmental and computational experiments allowed detailed mechanistic studies for representative PTFE composites, including metal-, ceramic-, carbon-, and polymer-filled composites. Experimental results found that the protective and polarized transfer film formed only in environmental water/oxygen, which could also reduce the composite wear by 10-fold or more. Density-functional-theory (DFT) calculations revealed that the electrophilic atom at solid surface tends to defluorinate PTFE molecule, which enables the tribochemical products of polarized PTFE accumulated near the sliding surfaces. Molecular dynamics simulations suggested that the strengthening of nonbonding interactions resulted from polar polymers improved polymer composites' adhesion and cohesion strengths against steel counterface, which was responsible for the achievement of macro-scale ultralow wear in PTFE composites. The relation between the atomistic interactions and the macroscopic wear behavior of composites was systematically discussed.


2021 ◽  
pp. 095400832110594
Author(s):  
Wei Xiao ◽  
Xin Ji ◽  
Lei Gao

Polytetrafluoroethylene (PTFE)-based matrix composites filled with glass fibers (GF) and graphite (GR) were prepared by an internal mixer and molded using a compression mold to produce test samples. The objective was to study the mechanical and tribological properties of PTFE composites filled with different lengths of GF. The fillers of GR and GF were 5 and 15 wt.%, respectively, with the lengths of the GF of 15, 20, 25, 30, and 35-μm in the work. The mechanical performance tests and tribological tests were carried out under the same conditions. The experimental results revealed that the mechanical properties and tribological properties of the PTFE composites filled with GF and GR were associated with the lengths of GF. When the length of GF increased from 15 to 20 μm, GF could be homogeneously dispersed in the PTFE-based matrix composites and the tensile strength reached the maximum value of 21.7 ± 3.3% MPa. Also, with 20-μm long GF, the composites exhibited the lowest coefficient of friction values and wear rates compared to PTFE with GF of the other lengths. The changes in frictional heat generation and frictional force of the composites during sliding friction were simulated using the finite element method. The theoretical simulation results matched with the experimental values, which proved the accuracy of the theoretical simulations.


Wear ◽  
2021 ◽  
Vol 486-487 ◽  
pp. 204097
Author(s):  
Federica Amenta ◽  
Giovanni Bolelli ◽  
Simone Pedrazzi ◽  
Giulio Allesina ◽  
Francesco Santeramo ◽  
...  

Tribologia ◽  
2021 ◽  
Vol 296 (2) ◽  
pp. 29-35
Author(s):  
Magdalena Lemecha ◽  
Krzysztof Ligier ◽  
Jerzy Napiórkowski

This paper presents a study of the tribological wear rate for PTFE-based composites in combination with C45 steel. PTFE composites with the addition of glass fibre, bronze, carbon fibre, and graphite were selected for the study. Tribological tests were conducted in a roller-block combination over an expanded contact area with no lubrication, using an SMC-2 machine. The study assessed the mass and volumetric wear for the test materials and the wear rate index. The highest wear values were noted for the PTFE composite with the addition of bronze, while the lowest was for the PTFE composite with the addition of glass fibre. For all the test materials, the formation of a polymer film on the steel counter specimen was noted.


Wear ◽  
2021 ◽  
pp. 204178
Author(s):  
Zhibin Lin ◽  
Ke Zhang ◽  
Jiaxin Ye ◽  
Xiangji Li ◽  
Xiaogang Zhao ◽  
...  

2021 ◽  
Author(s):  
Zhangzhao Weng ◽  
Jun Luo ◽  
Hongfeng Lv ◽  
Shuai Zhou ◽  
Xiaoqiang Wang ◽  
...  

2021 ◽  
pp. 107369
Author(s):  
Aswani Kumar Bandaru ◽  
Paul M. Weaver ◽  
Ronan M. O’ Higgins

Sign in / Sign up

Export Citation Format

Share Document