Heat dissipative mechanical damping properties of EPDM rubber composites including hybrid fillers of aluminium nitride and boron nitride

Soft Matter ◽  
2020 ◽  
Vol 16 (29) ◽  
pp. 6812-6818 ◽  
Author(s):  
Jung Keun Cho ◽  
Hanna Sun ◽  
Hee Won Seo ◽  
June-Young Chung ◽  
Mina Seol ◽  
...  

As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors, which could be enhanced by the composites with the different-shaped hybrid fillers.

Author(s):  
Fuhua Jia ◽  
Emmanuel Oluwaseyi Fagbohun ◽  
Qianyu Wang ◽  
Duoyin Zhu ◽  
Jianling Zhang ◽  
...  

2019 ◽  
Vol 3 (11) ◽  
pp. 2455-2462 ◽  
Author(s):  
Si-Wei Xiong ◽  
Pan Zhang ◽  
Yu Xia ◽  
Pei-Gen Fu ◽  
Jing-Gang Gai

We developed a thermally conductive and antimicrobial QACs@h-BN/LLDPE composites for thermal management of medically electronic devices, it was approximately 100% against both E. coli and S. aureus and its thermal conductivity can reach 1.115 W m−1 K−1.


RSC Advances ◽  
2019 ◽  
Vol 9 (13) ◽  
pp. 7388-7399 ◽  
Author(s):  
Yuyuan Zhang ◽  
Wei Gao ◽  
Yujing Li ◽  
Dehe Zhao ◽  
Hong Yin

The synergistic effect of h-BN/c-BN/EP on the enhancement of thermal conductivity of polymeric composites has been demonstrated.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3634
Author(s):  
John M. Hutchinson ◽  
Sasan Moradi

Epoxy resin composites filled with thermally conductive but electrically insulating particles play an important role in the thermal management of modern electronic devices. Although many types of particles are used for this purpose, including oxides, carbides and nitrides, one of the most widely used fillers is boron nitride (BN). In this review we concentrate specifically on epoxy-BN composites for high thermal conductivity applications. First, the cure kinetics of epoxy composites in general, and of epoxy-BN composites in particular, are discussed separately in terms of the effects of the filler particles on cure parameters and the cured composite. Then, several fundamental aspects of epoxy-BN composites are discussed in terms of their effect on thermal conductivity. These aspects include the following: the filler content; the type of epoxy system used for the matrix; the morphology of the filler particles (platelets, agglomerates) and their size and concentration; the use of surface treatments of the filler particles or of coupling agents; and the composite preparation procedures, for example whether or not solvents are used for dispersion of the filler in the matrix. The dependence of thermal conductivity on filler content, obtained from over one hundred reports in the literature, is examined in detail, and an attempt is made to categorise the effects of the variables and to compare the results obtained by different procedures.


Sign in / Sign up

Export Citation Format

Share Document