A form-finding approach for the conceptual design of air-supported structures using 3D graphic statics

2021 ◽  
Vol 243 ◽  
pp. 106401
Author(s):  
Zongshuai Wan ◽  
Patrick Ole Ohlbrock ◽  
Pierluigi D'Acunto ◽  
Zhenggang Cao ◽  
Feng Fan ◽  
...  
Author(s):  
Masaaki Miki ◽  
Emil Adiels ◽  
William Baker ◽  
Toby Mitchell ◽  
Alexander Sehlstrom ◽  
...  

Pure-compression shells have been the central topic in the form-finding of shells. This paper studies tension-compression mixed type shells by utilizing a NURBS-based isogeometric form-finding approach that analyzes Airy stress functions to expand the possible plan geometry. A complete set of smooth version graphic statics tools is provided to support the analyses. The method is validated using examples with known solutions, and a further example demonstrates the possible forms of shells that the proposed method permits. Additionally, a guideline to configure a proper set of boundary conditions is presented through the lens of asymptotic lines of the stress functions.


Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 392-407
Author(s):  
Chao Xu ◽  
Zhengzhong Wang ◽  
Baohui Li ◽  
Quanhong Liu

Author(s):  
Yuchi Shen ◽  
Pierluigi D’Acunto ◽  
Jean-Philippe Jasienski ◽  
Patrick Ole Ohlbrock

Author(s):  
Masaaki Miki ◽  
Emil Adiels ◽  
William Baker ◽  
Toby Mitchell ◽  
Alexander Sehlstrom ◽  
...  

Pure-compression shells have been the central topic in the form-finding of shells. This paper studies tension-compression mixed type shells by utilizing a NURBS-based isogeometric form-finding approach that analyzes Airy stress functions to expand the possible plan geometry. A complete set of smooth version graphic statics tools is provided to support the analyses. The method is validated using examples with known solutions, and a further example demonstrates the possible forms of shells that the proposed method permits. Additionally, a guideline to configure a proper set of boundary conditions is presented through the lens of asymptotic lines of the stress functions.


Author(s):  
Ehud Kroll ◽  
Sridhar S. Condoor ◽  
David G. Jansson
Keyword(s):  

2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


2014 ◽  
Vol 10 (6) ◽  
pp. 5-15
Author(s):  
S.A. Matviyenko ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document