pure compression
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Daniele Marras ◽  
Marco Palanca ◽  
Luca Cristofolini

The mechanical consequences of osteophytes are not completely clear. We aimed to understand whether and how the presence of an osteophyte perturbs strain distribution in the neighboring bone. The scope of this study was to evaluate the mechanical behavior induced by the osteophytes using full-field surface strain analysis in different loading configurations. Eight thoracolumbar segments, containing a vertebra with an osteophyte and an adjacent vertebra without an osteophyte (control), were harvested from six human spines. The position and size of the osteophytes were evaluated using clinical computed tomography imaging. The spine segments were biomechanically tested in the elastic regime in different loading configurations while the strains over the frontal and lateral surface of vertebral bodies were measured using digital image correlation. The strain fields in the vertebrae with and without osteophytes were compared. The correlation between osteophyte size and strain alteration was explored. The strain fields measured in the vertebrae with osteophytes were different from the control ones. In pure compression, we observed a mild trend between the size of the osteophyte and the strain distribution (R2 = 0.32, p = 0.15). A slightly stronger trend was found for bending (R2 = 0.44, p = 0.075). This study suggests that the osteophytes visibly perturb the strain field in the nearby vertebral area. However, the effect on the surrounding bone is not consistent. Indeed, in some cases the osteophyte shielded the neighboring bone, and in other cases, the osteophyte increased the strains.


Author(s):  
Mohammad Radwan ◽  
Balázs Kövesdi

Determining the plate or the local buckling resistance is highly important in designing steel buildings and bridges. The EN 1993-1-5Annex C provides a FEM-based design approach to calculate the buckling resistance based on numerical design calculations (geometrical and material nonlinear analysis - GMNIA). Within the GMNIA analysis-based stability design, the application of the imperfections has a special role. Thus, the applicability of the EN 1993-1-5 based buckling curve (Winter curve) has been questioned for pure compression, and previous investigations showed the buckling curve of EN 1993-1-5 Annex B is more appropriate for the design of slender box-section columns subjected to pure compression, the magnitude of the equivalent geometric imperfection to be applied in numerical models for local buckling is also questioned and investigated by the authors within the current paper. The aim of the current research program is to investigate the necessary equivalent geometric imperfections to be applied in FEM-based design calculations using GMNIA calculations. A numerical parametric study is executed to investigate the imperfection sensitivity of box-section columns having different local slenderness. The necessary imperfection magnitudes are determined to each analyzed geometry leading to the buckling resistance predicted by the standardized buckling curves. Based on the numerical parametric study, a proposal for the applicable equivalent geometric imperfection magnitude is developed, which conforms to the plate buckling curves of the EN 1993-1-5 and giving an improvement proposal to the local buckling imperfection magnitudes of the prEN 1993-1-14, which is currently under development.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rongbin Hou ◽  
Leige Xu ◽  
Duoxin Zhang ◽  
Yanke Shi ◽  
Luyang Shi

The creep behavior of rock has received much attention for analyzing the long-term response and stability of underground rock engineering structures. Numerous studies have been carried out on the creep properties of various rocks under pure compression conditions. However, little attention has been paid to the creep behavior of rocks in a combined compression-shear loading state. In this work, a novel combined compression and shear test (C-CAST) system was used to carry out inclined uniaxial compression tests and creep tests for various inclination angles (0°, 5°, 10°, and 15°). The results revealed that the peak strength of the coal decreased with the inclination angle of the specimen, which could provide the basis for setting up a creep test scheme. Multistage compression-shear creep tests were carried out on specimens with different inclination angles. Based on the analysis of the creep test data, the creep behavior of the coal in a combined compression-shear state was studied. It was found that the specimen inclination affected the time-dependent deformation, long-term strength (LTS), and time to failure. Compared with the specimen under pure compression, the inclination specimens tend to produce large shear strain with time, while they were more prone to shear failure. The reduction of the long-term strength was closely associated with the increase of the specimen inclination angle when the angle was more than 5°. Moreover, the ratio of the peak strength to the LTS was not affected by the specimen inclination, which is considered an inherent characteristic. We anticipate that the results obtained will assist in pillar design and long-term stability analysis.


Inorganics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 45
Author(s):  
Sai Smruti Samantaray ◽  
Seth T. Putnam ◽  
Nicholas P. Stadie

Physical adsorption remains a promising method for achieving fast, reversible hydrogen storage at both ambient and cryogenic conditions. Research in this area has recently shifted to focus primarily on the volumetric (H2 stored/delivered per volume) gains achieved within an adsorptive storage system over that of pure H2 compression; however, the methodology for estimating a volumetric stored or delivered amount requires several assumptions related to the ultimate packing of the adsorbent material into an actual storage system volume. In this work, we critically review the different assumptions commonly employed, and thereby categorize and compare the volumetric storage and delivery across numerous different porous materials including benchmark metal-organic frameworks, porous carbons, and zeolites. In several cases, there is a significant gain in both storage and delivery by the addition of an adsorbent to the high-pressure H2 storage system over that of pure compression, even at room temperature. Lightweight, low-density materials remain the optimal adsorbents at low temperature, while higher density, open metal-containing frameworks are necessary for high-density room temperature storage and delivery.


2021 ◽  
pp. 1-39
Author(s):  
Sanhita Das ◽  
Shubham Sharma ◽  
Ananth Ramaswamy ◽  
Debasish Roy ◽  
J.N. Reddy

Abstract Regularized continuum damage models such as those based on an order parameter (phase field) have been extensively used to characterize brittle damage of compressible elastomers. However, the prescription of the surface integral and the degradation function for stiffness lacks a physical basis. In this article we propose a continuum damage model that draws upon the postulate that a damaged material could be mathematically described as a Riemannian manifold. Working within this framework with a well defined Riemannian metric designed to capture features of isotropic damage, we prescribe a scheme to prevent damage evolution under pure compression. The result is a substantively reduced stiffness degradation due to damage before the peak response and a faster convergence rate with the length scale parameter in comparison with a second order phase field formulation that involves a quadratic degradation function. We also validate this model using results of tensile experiments on double notched plates.


Author(s):  
Masaaki Miki ◽  
Emil Adiels ◽  
William Baker ◽  
Toby Mitchell ◽  
Alexander Sehlstrom ◽  
...  

Pure-compression shells have been the central topic in the form-finding of shells. This paper studies tension-compression mixed type shells by utilizing a NURBS-based isogeometric form-finding approach that analyzes Airy stress functions to expand the possible plan geometry. A complete set of smooth version graphic statics tools is provided to support the analyses. The method is validated using examples with known solutions, and a further example demonstrates the possible forms of shells that the proposed method permits. Additionally, a guideline to configure a proper set of boundary conditions is presented through the lens of asymptotic lines of the stress functions.


Author(s):  
Masaaki Miki ◽  
Emil Adiels ◽  
William Baker ◽  
Toby Mitchell ◽  
Alexander Sehlstrom ◽  
...  

Pure-compression shells have been the central topic in the form-finding of shells. This paper studies tension-compression mixed type shells by utilizing a NURBS-based isogeometric form-finding approach that analyzes Airy stress functions to expand the possible plan geometry. A complete set of smooth version graphic statics tools is provided to support the analyses. The method is validated using examples with known solutions, and a further example demonstrates the possible forms of shells that the proposed method permits. Additionally, a guideline to configure a proper set of boundary conditions is presented through the lens of asymptotic lines of the stress functions.


2020 ◽  
Vol 494 (2) ◽  
pp. 2706-2717
Author(s):  
Vicent Quilis ◽  
José-María Martí ◽  
Susana Planelles

ABSTRACT We describe and test a new version of the adaptive mesh refinement cosmological code masclet. The new version of the code includes all the ingredients of its previous version plus a description of the evolution of the magnetic field under the approximation of the ideal magnetohydrodynamics (MHD). To preserve the divergence-free condition of MHD, the original divergence cleaning algorithm of Dedner et al. (2002) is implemented. We present a set of well-known 1D and 2D tests, such as several shock tube problems, the fast rotor, and the Orszag–Tang vortex. The performance of the code in all the tests is excellent with estimated median relative errors of ∇ · B in the 2D tests smaller than 5 × 10−5 for the fast rotor test, and 5 × 10−3 for the Orszag–Tang vortex. As an astrophysical application of the code, we present a simulation of a cosmological box of 40 comoving Mpc side length in which a primordial uniform comoving magnetic field of strength 0.1 nG is seeded. The simulation shows how the magnetic field is channelled along the filaments of gas and is concentrated and amplified within galaxy clusters. Comparison with the values expected from pure compression reveals an additional amplification of the magnetic field caused by turbulence in the central region of the cluster. Values of the order of ∼1µG are obtained in clusters at z ∼ 0 with median relative errors of ∇ · B below 0.4 per cent. The implications of a proper description of the dynamics of the magnetic field and their possible observational counterparts in future facilities are discussed.


Sign in / Sign up

Export Citation Format

Share Document