A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates

2009 ◽  
Vol 91 (3) ◽  
pp. 337-357 ◽  
Author(s):  
Sai Sudha Ramesh ◽  
C.M. Wang ◽  
J.N. Reddy ◽  
K.K. Ang
2008 ◽  
Vol 30 (2) ◽  
pp. 112-121 ◽  
Author(s):  
Tran Ich Thinh ◽  
Tran Huu Quoc

In this paper, authors use a finite element model based on higher-order displacement plate theory for analysis of stiffened laminated composite plates. Transverse shear deformation is included in the formulation making the model applicable for both moderately thick and thin composite plates. The plate element used is a nine-noded isoparametric one with nine degrees of freedom at each node. The stiffness of stiffener is reflected at all nine nodes of plate element in which it is placed. Accordingly, the stiffeners can be positioned anywhere within the place element. Free vibration and deflection of stiffened laminated composite plates are carried out, and results are compared with existing analytical and other solutions.


Author(s):  
Aniket Chanda ◽  
Utkarsh Chandel ◽  
Rosalin Sahoo ◽  
Neeraj Grover

In the present study, the electro-mechanical responses of smart laminated composite plates with piezoelectric materials are derived using a two-dimensional (2 D) displacement-based non-polynomial higher-order shear deformation theory. The kinematics of the mathematical model incorporates the deformation of laminates which account for the effects of transverse shear deformation and a non-linear variation of the in-plane displacements using inverse sine hyperbolic function of the thickness coordinate. The equilibrium equations are obtained using the minimization of energy principle known as the principle of minimum potential energy (PMPE) which is also based on a variational approach and the solutions are obtained using Navier’s solution technique for diaphragm supported smart laminated composite plates. The responses obtained in the form of deflection and stresses are compared with three dimensional (3 D) solutions and also with different polynomial and non-polynomial based higher-order theories in the literature. The transverse shear stresses are obtained using 3 D equilibrium equations of elasticity to enhance the accuracy of the present results. Various examples are numerically solved to establish the efficiency of the present model.


2002 ◽  
Vol 69 (6) ◽  
pp. 790-799 ◽  
Author(s):  
J. B. Dafedar ◽  
Y. M. Desai

A novel, analytical mixed theory based on the potential energy principle has been presented in this paper to investigate buckling response of laminated composite plates subjected to mechanical and hygrothermal loads. Two sets of higher-order mixed models have been proposed on the basis of an individual layer as well as equivalent single layer theories by selectively incorporating nonlinear components of Green’s strain tensor. Displacements, as well as transverse stress continuities, have been enforced in the formulation of models by incorporating displacements and transverse stresses as the degrees-of-freedom. The modal transverse stresses have been obtained as eigenvectors and thus their separate calculations have been advantageously avoided. Solutions from the models have been shown to be in excellent agreement with the available three-dimensional elasticity solutions. Few benchmark solutions have also been presented for the bi-axial compression-tension loading.


Sign in / Sign up

Export Citation Format

Share Document