Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact

2019 ◽  
Vol 227 ◽  
pp. 111208 ◽  
Author(s):  
Zhenqian Lu ◽  
Zishun Yuan ◽  
Xiaogang Chen ◽  
Jiawen Qiu

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 604
Author(s):  
Fengyan Chen ◽  
Yong Peng ◽  
Xuanzhen Chen ◽  
Kui Wang ◽  
Zhixiang Liu ◽  
...  

The ballistic resistance of GFRP laminates subjected to high-velocity impact was studied. Based on the damage situation of GFRP laminate observed from the single-stage gas gun testing, the three-dimensional (3D) model combining strain rate effect and Hashin failure criterion was established, and the result presented good agreement between the simulation and experiment. Three factors, including layer angle, stacking sequence and proportion of different layer angles, were taken into consideration in the models. An orthogonal test method was used for the analysis, which can reduce the number of simulations effectively without sacrificing the accuracy of the result. The result indicated a correlation between the ballistic resistance and layouts of GFRP laminates, on which the stacking sequence contributed stronger influence. What was more, the laminate with layer angles 0°/90° and ±45° presented greater ballistic resistance than the other angle pairs, and adopting an equal proportion of different layer angles is helpful for GFRP laminates to resist impact as well.



2018 ◽  
Vol 184 ◽  
pp. 484-496 ◽  
Author(s):  
Jianfeng Liu ◽  
Yuan Long ◽  
Chong Ji ◽  
Qiang Liu ◽  
Mingshou Zhong ◽  
...  


2017 ◽  
Vol 31 (3) ◽  
pp. 392-407 ◽  
Author(s):  
A Khodadadi ◽  
GH Liaghat ◽  
AR Sabet ◽  
H Hadavinia ◽  
A Aboutorabi ◽  
...  

This study presents the high-velocity impact performance of a composite material composed of woven Kevlar fabric impregnated with a colloidal shear thickening fluids (STFs). Although the precise role of the STF in the high-velocity defeat, process is not exactly known but it is suspected to be due to the increased frictional interaction between yarns in impregnated fabrics. In order to explore the mechanism of this enhanced energy absorption, high-velocity impact test was conducted on neat, impregnated fabric and also on pure STF without fabric. A finite element model has been carried out to consider the effect of STF impregnation on the ballistic performance. For this purpose, fabric was modeled using LS-DYNA by employing the experimental results of yarn pull-out tests to characterize the frictional behavior of the STF impregnated fabric. The simulation result is a proof that the increased performance for STF impregnated Kevlar fabric is due to the increased friction.



2018 ◽  
Vol 112 ◽  
pp. 52-65 ◽  
Author(s):  
Jianfeng Liu ◽  
Yuan Long ◽  
Chong Ji ◽  
Qiang Liu ◽  
Mingshou Zhong ◽  
...  


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.



1980 ◽  
Vol 17 (10) ◽  
pp. 763-766 ◽  
Author(s):  
C. C. Chamis ◽  
J. H. Sinclair


1972 ◽  
Vol 5 (5) ◽  
pp. 812-813
Author(s):  
V. V. Kovriga ◽  
V. N. Chalidze


2015 ◽  
Vol 95 ◽  
pp. 49-60 ◽  
Author(s):  
Niyazi Tanlak ◽  
Fazil O. Sonmez ◽  
Mahmut Senaltun


Sign in / Sign up

Export Citation Format

Share Document