scholarly journals Micromechanical model for rapid prediction of plain weave fabric composite strengths under biaxial tension

2021 ◽  
Vol 255 ◽  
pp. 112888
Author(s):  
Jiangbo Bai ◽  
Zhenzhou Wang ◽  
Adam Sobey ◽  
Ajit Shenoi
2017 ◽  
Vol 51 (20) ◽  
pp. 2863-2878 ◽  
Author(s):  
MM Shokrieh ◽  
R Ghasemi ◽  
R Mosalmani

In the present research, a micromechanical-analytical model was developed to predict the elastic properties and strength of balanced plain weave fabric composites. In this way, a new homogenization method has been developed by using a laminate analogy method for the balanced plain weave fabric composites. The proposed homogenization method is a multi-scale homogenization procedure. This model divides the representative volume element to several sub-elements, in a way that the combination of the sub-elements can be considered as a laminated composite. To determine the mechanical properties of laminates, instead of using an iso-strain assumption, the assumptions of constant in-plane strains and constant out-of-plane stress have been considered. The applied assumptions improve the accuracy of prediction of mechanical properties of balanced plain weave fabrics composites, especially the out-of-plane elastic properties. Also, the stress analysis for prediction of strain–stress behavior and strength has been implemented in a similar manner. In addition, the nonlinear mechanical behavior of balanced plain weave composite is studied by considering the inelastic mechanical behavior of its polymeric matrix. To assess the accuracy of the present model, the results were compared with available results in the literature. The results, including of engineering constants (elastic modulus and Poisson’s ratio) and stress–strain behavior show the accuracy of the present model.


1999 ◽  
Vol 33 (3) ◽  
pp. 188-220 ◽  
Author(s):  
J. L. Kuhn ◽  
P. G. Charalambides

Author(s):  
Jiangbo Bai ◽  
Junjiang Xiong ◽  
Qiang Wang

This paper addresses a new micromechanical model to predict biaxial tensile moduli of plain weave fabric (PWF) composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell (UC) were idealized as the curved beams with a path depicted by using sinusoidal shape functions. The biaxial tensile moduli of PWF composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. The biaxial tensile tests were respectively conducted on the RTM-made EW220/5284 PWF composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. The predictions from the new model were compared with experimental data and good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric (PWF) composites could be predicted based only on the properties of basic woven fabric.


2017 ◽  
Vol 89 (3) ◽  
pp. 434-444 ◽  
Author(s):  
Yuan Yao ◽  
Xiaoshuang Huang ◽  
Xiongqi Peng ◽  
Pengfei Liu ◽  
Gong Youkun

A nonlinear anisotropic hyperelastic constitutive model is developed for plain weave fabrics by considering biaxial tensile coupling. The strain energy function is decomposed into two parts to represent tensile energy, including the biaxial tensile coupling effect from fiber elongation and shearing energy from relative rotation between warp and weft yarns. A simple and efficient material parameter identification method is proposed. The model is exemplified on a balanced plain weave glass fabric. Experimental data from the literature are used to identify material parameters in the constitutive model. Model validation is implemented by comparing numerical results with various experimental data, including biaxial tension tests under different stretch ratios and the picture frame shearing test. The developed constitutive model is applied to numerical simulation of a double-dome stamping of the plain weave fabric. The influences of binder force and initial fiber yarn orientation on forming are investigated. Numerical results demonstrated that the biaxial tensile coupling effect could not be neglected in forming simulation. The developed constitutive model is suitable to characterize the nonlinear behavior of plain weave fabrics under large deformation.


Sign in / Sign up

Export Citation Format

Share Document