An anisotropic hyperelastic constitutive model for plain weave fabric considering biaxial tension coupling

2017 ◽  
Vol 89 (3) ◽  
pp. 434-444 ◽  
Author(s):  
Yuan Yao ◽  
Xiaoshuang Huang ◽  
Xiongqi Peng ◽  
Pengfei Liu ◽  
Gong Youkun

A nonlinear anisotropic hyperelastic constitutive model is developed for plain weave fabrics by considering biaxial tensile coupling. The strain energy function is decomposed into two parts to represent tensile energy, including the biaxial tensile coupling effect from fiber elongation and shearing energy from relative rotation between warp and weft yarns. A simple and efficient material parameter identification method is proposed. The model is exemplified on a balanced plain weave glass fabric. Experimental data from the literature are used to identify material parameters in the constitutive model. Model validation is implemented by comparing numerical results with various experimental data, including biaxial tension tests under different stretch ratios and the picture frame shearing test. The developed constitutive model is applied to numerical simulation of a double-dome stamping of the plain weave fabric. The influences of binder force and initial fiber yarn orientation on forming are investigated. Numerical results demonstrated that the biaxial tensile coupling effect could not be neglected in forming simulation. The developed constitutive model is suitable to characterize the nonlinear behavior of plain weave fabrics under large deformation.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1780 ◽  
Author(s):  
Zhipeng Qu ◽  
Wei He ◽  
Mingyun Lv ◽  
Houdi Xiao

This paper reports the biaxial tensile mechanical properties of the envelope material through experimental and constitutive models. First, the biaxial tensile failure tests of the envelope material with different stress ratio in warp and weft directions are carried out. Then, based on fiber-reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model on envelope material with different stress ratio is developed. A strain energy function that characterizes the anisotropic behavior of the envelope material is decomposed into three parts: fiber, matrix and fiber–fiber interaction. The fiber–matrix interaction is eliminated in this model. A new simple model for fiber–fiber interaction with different stress ratio is developed. Finally, the results show that the constitutive model has a good agreement with the experiment results. The results can be used to provide a reference for structural design of envelope material.


Author(s):  
Jiangbo Bai ◽  
Junjiang Xiong ◽  
Qiang Wang

This paper addresses a new micromechanical model to predict biaxial tensile moduli of plain weave fabric (PWF) composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell (UC) were idealized as the curved beams with a path depicted by using sinusoidal shape functions. The biaxial tensile moduli of PWF composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. The biaxial tensile tests were respectively conducted on the RTM-made EW220/5284 PWF composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. The predictions from the new model were compared with experimental data and good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric (PWF) composites could be predicted based only on the properties of basic woven fabric.


2017 ◽  
Vol 52 (5) ◽  
pp. 333-343 ◽  
Author(s):  
JB Bai ◽  
JJ Xiong ◽  
RA Shenoi ◽  
Q Wang

This article presents a new micromechanical model to predict biaxial tensile moduli of plain weave fabric composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell were idealized as curved beams with a path depicted using sinusoidal shape functions. The biaxial tensile moduli of plain weave fabric composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. Biaxial tensile tests were conducted on the resin transfer molding–made EW220/5284 plain weave fabric composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. Predictions from the new model were compared with experimental data. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric composites can be predicted based only on the properties of basic woven fabric.


1985 ◽  
Vol 50 (11) ◽  
pp. 2381-2395
Author(s):  
Alena Brunovská ◽  
Ján Buriánek ◽  
Ján Ilavský ◽  
Ján Valtýni

The diffusion and the shell progressive models of deactivation caused by irreversible chemisorption of a catalytic poison are presented for a single catalyst pellet. The method for solution of the model equations is proposed. The numerical results are compared with experimental data obtained by measuring concentration and temperature changes due to thiophene poisoning in benzene hydrogenation over a nickel-alumina catalyst.


Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


1981 ◽  
Vol 51 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Peter R. Lord ◽  
Martha E. Perez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document