Nonlinear vibration characteristics of rotating composite blade considering the temperature-dependent graded material properties

2021 ◽  
Vol 258 ◽  
pp. 113419
Author(s):  
Peng-Fei Dang ◽  
Zheng-Xin Yang ◽  
Yang-Yang Yan ◽  
Qing-Kai Han ◽  
Zhi-Hao Jin
2018 ◽  
Vol 22 (3) ◽  
pp. 658-688 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Ngo Duc Tuan ◽  
Pham Hong Cong ◽  
Ngo Dinh Dat ◽  
Nguyen Dinh Khoa

Based on the first order shear deformation shell theory, this paper presents an analysis of the nonlinear dynamic response and vibration of imperfect eccentrically stiffened functionally graded material (ES-FGM) cylindrical panels subjected to mechanical, thermal, and blast loads resting on elastic foundations. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to simple power-law distribution in terms of the volume fractions of the constituents. Both functionally graded material cylindrical panels and stiffeners having temperature-dependent properties are deformed under temperature, simultaneously. Numerical results for the dynamic response of the imperfect ES-FGM cylindrical panels with two cases of boundary conditions are obtained by the Galerkin method and fourth-order Runge–Kutta method. The results show the effects of geometrical parameters, material properties, imperfections, mechanical and blast loads, temperature, elastic foundations and boundary conditions on the nonlinear dynamic response of the imperfect ES-FGM cylindrical panels. The obtained numerical results are validated by comparing with other results reported in the open literature.


Author(s):  
Ahmed Raza ◽  
Himanshu Pathak ◽  
Mohammad Talha

In this work, stochastic perturbation-based vibration characteristics of cracked bi-material and functionally graded material (FGM) domain with uncertain material properties are investigated using the extended finite element method. The level set function is implemented to track the geometrical discontinuities. The partition of unity-based extrinsic enrichment technique is employed to model the crack and material interface. The exponential law is used to model the graded material properties of FGM. The First-order perturbation technique (FOPT) is implemented to predict the standard deviation of natural frequency for the given uncertainties in the material properties. The numerical results are presented to show the effect of geometrical discontinuities and material randomness on vibration characteristics.


2020 ◽  
Vol 20 (04) ◽  
pp. 2050043 ◽  
Author(s):  
Jian Yang ◽  
Xu-Hao Huang ◽  
Hui-Shen Shen

Laminated beams made of nanocomposite materials have been used in many industrial sectors. This paper reports a study on the vibration behavior of laminated beams when experiencing the large amplitude vibration. The beams are made of perfectly bonded carbon nanotube-reinforced composite (CNTRC) layers. The novel constructions of CNTRC laminated beams with out-of-plane maximum negative Poisson’s ratio (NPR) are proposed. The volume fraction of CNT may change across the beam thickness which results in a piece-wise pattern. The material properties of the CNTRC layers are temperature-dependent and can be estimated by the extended rule of mixture model. The beams are considered to rest on a two-parameter elastic foundation and under differential thermal environmental conditions. The higher order shear deformation beam theory is applied to derive the motion equations of the nonlinear vibration of FG-CNTRC laminated beams. These equations include the influencing factors such as the geometrical nonlinearity in the von Kármán sense, the thermal effects and the beam–foundation interaction. The nonlinear vibration solutions can be obtained by employing a two-step perturbation approach. The nonlinear vibration characteristics of FG-CNTRC laminated beams under different sets of loading conditions and thermal environmental conditions are discussed in detail through a series of parametric studies. Numerical results show that the NPR has a significant effect on the large amplitude vibration characteristics of CNTRC laminated beams.


Sign in / Sign up

Export Citation Format

Share Document