Test on residual ultimate strength of pultruded concrete-filled GFRP tubular short columns after lateral impact

2021 ◽  
Vol 260 ◽  
pp. 113520 ◽  
Author(s):  
Zhan Guo ◽  
Yao Zhu ◽  
Yu Chen ◽  
Yang Zhao
2018 ◽  
Vol 80 (2) ◽  
Author(s):  
Azrul Abd Mutalib ◽  
Mohamed Hamza Mussa ◽  
Khaleel Mohammad Khaleel Abusal

Recently, the concrete filled stainless steel tubes (CFSST) columns are widely applied in modern construction due to its aesthetic appearance, high corrosion resistant and less construction cost. The current study aims to evaluate the behavior of CFSST column with square hollow section (SHS) numerically under axial compressive load by using ABAQUS software. A good consistency had achieved between the numerical and experimental test results in terms of load-displacement behaviour and ultimate strength with a maximum difference equal to 2%. Intensive parametric studies had been conducted to determine the effects of stainless steel tubes and concrete properties on the ultimate load capacity of CFSST column. The results proved that the stainless steel tube thickness (t) capable to increase the strength of column by143.59% at t = 10 mm as compared with t = 2 mm, whereas a slight effect had observed for the variation of stainless steel proof stress ( ). On the other hand, the higher values of concrete strength (fc′) obviously reduced the lateral expansion of CFSST column at initial load and led to increase the ultimate load capacity by 34.18 % at fc′ = 80 MPa as compared with  fc′ = 30 MPa. Furthermore, the design strengths calculated according to the Eurocode 4 for concrete filled steel tube (CFST) column appeared a good agreement with the numerical results within an average difference value 2.49%, hence, it could consider as the most rational design method to determine the ultimate strength of CFSST column.


1998 ◽  
Vol 25 (2) ◽  
pp. 319-330 ◽  
Author(s):  
Nabil Abdel-Rahman ◽  
K S Sivakumaran

Perforations are often provided in the web and (or) flange plates of beams and columns of cold-formed steel (CFS) structural members in order to facilitate duct work, piping, and bridging. This paper is concerned with the establishment of effective design width equations for the determination of the ultimate strength of such perforated members in compression. A proven finite element model has been used to study the effects of perforation parameters on the ultimate strength of perforated members. The finite element model consists of short columns of lipped channel CFS sections, discretized using nonlinear "assumed strain" shell finite elements, and utilising experimental-based material properties models. The parametric study covers web slenderness values between 31 and 194, perforation width to web width ratios up to 0.6, and perforation height to perforation width ratios up to 3.0. Effective design width equations for plates having square perforations and elongated perforations were developed. The efficiency and accuracy of these two equations in predicting the ultimate strength of perforated CFS compression members have been verified through a comparison with the ultimate load results of several experimental studies from the literature.Key words: cold-formed steel, compressive loads, local buckling, perforations, finite element analysis, experimental, post-buckling strength, ultimate strength, effective width, design.


2019 ◽  
Vol 12 (3) ◽  
pp. 95-102
Author(s):  
Ghzwan Ghanim Jumah

This work deals with investigating the capacity of high strength columns, under axial compression loads. A total of nine circular column with 600 mm length and 150 mm outer diameter were tested, three of them were solid as a reference, the remaining six columns were with internal hole of 50 and 75 mm dimeter. The effect of hole size as well as area of longitudinal steel reinforcement was studied. Area of steel used where 0, 301 and 471 mm2 and two hole size were 50 and 75 mm. The results showed that the increasing of longitudinal reinforcement ratio from 0 % (plain) to 2.67% (steel reinforcement area of 471 mm2) for solid column cause an increase in the ultimate strength by 33.6%, while for hollow columns with 75 mm internal hole the ultimate strength increased up to 33.2 %. Increase in hole dimeter from 50 to 75 mm caused a reduction of columns capacity in all cause, the decrease was up 33 % for columns with 301 mm2 steel area was up to 32 %, for columns with 417 mm2


1977 ◽  
Vol 1977 (141) ◽  
pp. 190-197 ◽  
Author(s):  
Yuzuru Fujita ◽  
Toshiharu Nomoto ◽  
Osamu Niho

2020 ◽  
Vol 86 (5) ◽  
pp. 43-51
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
P. V. Volkov ◽  
D. A. Zhgut

The history of appearance and the current state of instrumented indentation are briefly described. It is noted that the materials instrumented indentation methods using a pyramid and ball indenters are actively developing and are currently regulated by several Russian and international standards. These standards provide formulas for calculating the Young’s modulus and hardness at maximum indentation load. Instrumented indentation diagrams «load F – displacement α» of a ball indenter for metallic materials were investigated. The special points on the instrumented indentation diagrams «F – α» loading curves in the area of elastic into elastoplastic deformation transition, and in the area of stable elastoplastic deformation are revealed. A loading curve area with the load above which the dF/dα begins to decrease is analyzed. A technique is proposed for converting «F – α» diagrams to «unrestored Brinell hardness HBt – relative unrestored indent depth t/R» diagrams. The elastic and elastoplastic areas of «HBt – t/R» diagrams are described by equations obtained analytically and experimentally. The materials strain hardening parameters during ball indentation in the area of elastoplastic and plastic deformation are proposed. The similarity of «HBt – t/R» indentation diagram with the «stress σ – strain δ» tensile diagrams containing common zones and points is shown. Methods have been developed for determining hardness at the elastic limit, hardness at the yield strength, and hardness at the ultimate strength by instrumented indentation with the equations for their calculation. Experiments on structural materials with different mechanical properties were carried out by instrumented indentation. The values of hardness at the elastic limit, hardness at the yield strength and hardness at the ultimate strength are determined. It is concluded that the correlations between the elastic limit and hardness at the elastic limit, yield strength and hardness at the yield strength, ultimate tensile strength and hardness at the ultimate strength is more justified, since the listed mechanical characteristics are determined by the common special points of indentation diagrams and tensile tests diagrams.


Sign in / Sign up

Export Citation Format

Share Document