indentation load
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 38)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lukasz Madej ◽  
Adam Legwand ◽  
Mohan Setty ◽  
Mateusz Mojzeszko ◽  
Konrad Perzyński ◽  
...  

AbstractHerein, we evaluate the nanoindentation test capabilities in the determination of flow stress characteristics of the matrix material in porous sinters. The Distaloy AB sample with 15% porosity after the sintering operation is selected as a case study for the investigation. 2D and 3D imaging techniques are employed first to highlight difficulties in identifying reliable nano hardness measurement zones for further properties evaluation. Then, nanoindentation test results are acquired with Berkovich tip pressed under various loads at different locations in the sample. Systematic indentations in the quartz sample are used as a cleaning procedure to minimize the effect of the possible build-up around the indenter tip. The representative indentation load range is selected based on the extracted material characteristics. With that, the stress–strain response of the sinter matrix material is identified. The reliability of the determined flow stress curve is confirmed with the use of conical nanoindentation measurement results and finite element simulations. Obtained results show that it is possible to calculate reliable flow stress characteristics of the matrix in the porous samples, with the assumption that experiments under various loading conditions and from various locations in the matrix are performed. It is also pointed out that various indentation loads should be used to eliminate the influence of the pile-up or scale effects that affect the overall material response.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7105
Author(s):  
Mingzhi Wang ◽  
Weidong Wang

In this paper, an inverse method is proposed for measuring the elastoplastic properties of metallic materials using a spherical indentation experiment. In the new method, the elastoplastic parameters are correlated with sub-space coordinates of indentation imprints using proper orthogonal decomposition (POD), and inverse identification of material properties is solved using a statistical Bayesian framework. The advantage of the method is that model parameters in the numerical optimization process are treated as the stochastic variables, and potential uncertainties can be considered. The posterior results obtained from the measuring method can provide valuable probabilistic information of the estimated elastoplastic properties. The proposed method is verified by the application on 2099-T83 Al-Li alloys. Results indicate that posterior distribution of material parameters exhibits more than one peak region when indentation load is not large enough. In addition, using the weighting imprints under different loads can facilitate the uniqueness in identification of elastoplastic parameters. The influence of the weighting coefficient on posterior identification results is analyzed. The elastoplastic properties identified by indentation and tensile experiment show good agreement. Results indicate that the established measuring method is effective and reliable.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6864
Author(s):  
Petr Skalka ◽  
Michal Kotoul

It is well-known that cracks are observed around the impression during indentation of brittle materials. The cracks inception depends on load conditions, material and indenter geometry. The paper aims to use experimental micro-indentation data, FE simulations with cohesive zone modelling, and an optimisation procedure to determine the cohesive energy density of silicon single crystals. While previous studies available in the literature, which use cohesive zone finite element techniques for simulation of indentation cracks in brittle solids, tried to improve methods for the evaluation of material toughness from the indentation load, crack size, hardness, elastic constants, and indenter geometry, this study focuses on the evaluation of the cohesive energy density 2Γ from which the material toughness can be easily determined using the well-known Griffith-Irwin formula. There is no need to control the premise of the linear fracture mechanics that the cohesive zone is much shorter than the crack length. Hence, the developed approach is suitable also for short cracks for which the linear fracture mechanics premise is violated.


2021 ◽  
pp. 1-27
Author(s):  
Alexander Grenadyorov ◽  
Andrey Solovyev ◽  
Konstantin Oskomov

Abstract The paper presents the experimental study of the friction and wear characteristics of amorphous carbon coating containing hydrogen and SiOx (a-C:H:SiOx) deposited onto WC-8Co cemented carbide substrates. A 5 μm thick a-C:H:SiOx coating was fabricated using plasma-assisted chemical vapor deposition. The tribological properties of the a-C:H:SiOx coating sliding in contact with WC–8Co, ZrO2, SiC, Si3N4 counter bodies, are examined using the ball-on-disc method at different normal loads and sliding speeds. Tribology testing shows that the minimum values of the friction coefficient (0.044) and the wear rate (9.3×10−8 mm3/Nm) are observed when using a counter body made of silicon nitride at a 5 N indentation load. The load increase from 5 to 12 N raises the friction coefficient up to 0.083 and the wear rate up to 46×10−8 mm3/Nm. When the sliding speed reaches its critical value, the coating friction provides the transition from sp3 hybridized to sp2 hybridized and polymeric carbon, which is accompanied by the reduction in the friction coefficient. The a-C:H:SiOx coating provides an increase in the critical sliding speed up to 50–75 mm/s, which exceeds that of non-alloyed (a-C and a-C:H) diamond-like carbon coatings as a result of doping by silicon and oxygen.


2021 ◽  
Vol 15 (58) ◽  
pp. 179-190
Author(s):  
Fedaoui Kamel ◽  
Amar Talhi ◽  
Mohamed Zine Touhami

This study, concerns the improvement of the hardness and resistance to wear of the Ti-6Al-4V alloy surface by means of thermochemical treatment, for obtaining coatings on the Ti-6Al-4V alloy gives performance of resistance to wear phenomena. Three-thermochemical treatment time (2h, 4h, and 6h) was chosen for investigation of the effect of such treatment on this alloy. The hardness test under an indentation load of 50 gf with a Vickers pyramidal indenter revealed that the surface hardness is 335 Hv for the untreated samples. On the other hand the hardness reaches approximately 1500 Hv during gas cementation at 930 °C for variable times (2h, 4h, 6h) followed by quenching at 840 °C in an oil medium, which was accompanied by a significant improvement in wear resistance. The characterization of the modified surface layers was made by means of a microscopic analysis and by X-ray diffraction. The case-hardening made it possible to obtain a wear resistance greater than that of the alloy not treated, minimal loss of mass by dry friction and an improvement in roughness as well as a good coefficient of friction.


2021 ◽  
Vol 87 (8) ◽  
pp. 64-68
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
M. V. Goryachkina ◽  
R. V. Rodyakina ◽  
...  

Methods for evaluation of Young’s modulus (Em) of structural materials by instrumented indentation using ball indenter have been considered. All these techniques are based on the solution of elastic contact problems performed by H. Hertz. It has been shown that registration of the initial elastic region in the «load – displacement» indentation diagram provides the Em determination for metals and alloys. However, it is necessary to evaluate accurately the elastic compliance of a device, to use an indenter with a large radius R, and ensure a high surface quality of the test material in advance. Methods for Em determation, when indentation diagrams are recorded in the elastoplastic indentation region, should include the effect of plastic deformation on the elastic displacement calculated by H. Hertz expression. However, it appeared essential to determine the relation between the elastic αel and plastic h components of the total elastoplastic displacement α and the elastic displacement α0 estimated by H. Hertz expression for a definite indentation load. A close correlation between α0 and αel is revealed for steels, aluminum, magnesium, and titanium alloys when using indenters with a radius of R = 0.2 – 5 mm (diameter D = 0.4 – 10 mm) and maximum indentation load Fmax = 47 – 29430 N (4.8 – 3000 kgf). It is also shown that a gradual decrease in Em is observed with an increase in R(D) at the same degree of loading F/D2 for the same material. This fact was explained by the scale factor effect.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4579
Author(s):  
Sathwik S. Kasyap ◽  
Kostas Senetakis

In materials science and engineering, a significant amount of research has been carried out using indentation techniques in order to characterize the mechanical properties and microstructure of a broad range of natural and engineered materials. However, there are many unresearched or partly researched areas, such as, for example, the investigation of the shape of the indentation load–displacement curve, the associated mechanism in porous materials with clastic texture, and the influence of the texture on the constitutive behavior of the materials. In the present study, nanoindentation is employed in the analysis of the mechanical behavior of a benchmark material composed of plaster of Paris, which represents a brand of highly porous-clastic materials with a complex structure; such materials may find many applications in medicine, production industry, and energy sectors. The focus of the study is directed at the examination of the influence of the porous structure on the load–displacement response in loading and unloading phases based on nanoindentation experiments, as well as the variation with repeating the indentation in already indented locations. Events such as pop-in in the loading phase and bowing out and elbowing in the unloading phase of a given nanoindentation test are studied. Modulus, hardness, and the elastic stiffness values were additionally examined. The repeated indentation tests provided validations of various mechanisms in the loading and unloading phases of the indentation tests. The results from this study provide some fundamental insights into the interpretation of the nanoindentation behavior and the viscoelastic nature of porous-clastic materials. Some insights on the influence of indentation spacing to depth ratio were also obtained, providing scope for further studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
A Sharma ◽  
Sree Harsha Nandam ◽  
Horst Hahn ◽  
K. Eswar Prasad

In this work, the deformation behavior of as-prepared (AP) and structurally relaxed (SR) Cu–Zr–based nanoglasses (NGs) are investigated using nano- and micro-indentation. The NGs are subjected to structural relaxation by annealing them close to the glass transition temperature without altering their amorphous nature. The indentation load, p, vs. displacement, h, curves of SR samples are characterized by discrete displacement bursts, while the AP samples do not show any of them, suggesting that annealing has caused a local change in the amorphous structure. In both the samples, hardness (at nano- and micro-indentation) decreases with increasing p, demonstrating the indentation size effect. The micro-indentation imprints of SR NGs show evidence of shear bands at the periphery, indicating a heterogeneous plastic flow, while AP NG does not display any shear bands. Interestingly, the shear band density decreases with p, highlighting the fact that plastic strain is accommodated entirely by the shear bands in the subsurface deformation zone. The results are explained by the differences in the amorphous structure of the two NGs.


Author(s):  
Yuqi Zhou ◽  
Houfu Dai ◽  
Ping Li

The molecular dynamics (MD) model of nano-indentation process was established to study the crack evolution in single crystal during nano-indentation. Two workpieces with different cracks and one workpiece with no crack were selected for indentation simulation in this study. The parameters of atom displacement, coordination number (CN), temperature, potential energy and loading force in the indentation process are analyzed in detail. Cracks were found to close during nano-indentation. Two modes of crack closure are observed: cooperative displacement and indentation failure. The existence of cracks will affect the size of transformation zone and the coordination number of atoms after indentation. Besides, the existence of cracks will reduce the increase of temperature and potential energy, and the closing mode of cracks is found to affect the value of indentation load. In addition, the change of stress with indentation depth at crack tip is calculated by theoretical model. The calculated stress curves reveal the evolution trend of cracks during indentation. These results provide guidance for the production of silicon wafer with higher surface quality.


Sign in / Sign up

Export Citation Format

Share Document