On the Fracture Toughness Testing for Single-Edge Notched Bend Specimen of Orthotropic Materials

2021 ◽  
pp. 114970
Author(s):  
Yifan Huang ◽  
Xin Wang
Author(s):  
Yuri Tkach ◽  
Anthony Horn ◽  
Adam Bannister ◽  
Edmund Bolton

An Engineering Critical Assessment (ECA) of a pipeline containing an axial defect is usually conservative if standard fracture test pieces are used for the fracture toughness testing. Conventional fracture toughness testing standards employ specimens containing deep cracks in order to guarantee conditions leading to high stress triaxiality and crack-tip constraint. In the current work, single edge notch bend (SENB) and single edge notch tension (SENT) test specimens of two different a/W (crack depth/specimen width) ratios (0.15 and 0.6) were used to obtain HAZ fracture toughness of a seam weld. The influence of specimen geometry and a/W ratio on fracture toughness was investigated. The Master Curve methodology was employed to characterise HAZ fracture toughness of the seam weld in the ductile-to-brittle transition region. The reference temperature T0 was estimated using the test results obtained on specimens of different geometries and constraint levels. A series of ECAs of the pipe containing a surface axial flaw was performed and the benefits of a constraint based fracture mechanics analysis were demonstrated.


2004 ◽  
Vol 261-263 ◽  
pp. 693-698
Author(s):  
J.S. Kim ◽  
Young Jin Kim ◽  
S.M. Cho

This paper compiles solutions of plastic η factors for standard and non-standard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental estimation than that of the LLD, for all cases considered in the present work. Moreover, the estimation based on the load- CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing a specimen with any thickness.


1974 ◽  
Vol 2 (6) ◽  
pp. 503 ◽  
Author(s):  
SF Etris ◽  
YR Fiorni ◽  
KC Lieb ◽  
IC Moore ◽  
AL Batik ◽  
...  

Author(s):  
Wen Guo Yuan ◽  
Da Qin Xu ◽  
You You Wu ◽  
Jens P. Tronskar

Fracture toughness testing in sour environment using Single Edge Notch Tensile (SENT) and Single Edge Notch Bend (SENB) specimens has been developed and applied by authors’ laboratory for Engineering Critical Assessment (ECA) of pipeline girth welds. The method of testing and application of fracture toughness result for ECAs of pipeline girth welds for sour service has been presented at a previous OMEA conference (paper OMAE2009-79305). The current paper presents the results of further experimental work carried out to evaluate the effect of strain rate on the fracture toughness value. A series of fracture toughness tests using SENT specimens was carried out in artificial brine sour environment (NACE solution “A” saturated with H2S) at ambient temperature. For comparison, the result from test in air condition are also presented and discussed. Following the test, the J-integral and the CTOD values were calculated and assessed. As expected, the results show significant effect of strain rate on the J integral value and the CTOD, especially for the strain rate range between 10−6/s to 10−7/s. Further experiments and studies are suggested to establish appropriate procedures and guidelines for selection of suitable strain rates for sour environment fracture toughness testing of pipeline girth welds.


Sign in / Sign up

Export Citation Format

Share Document