Dynamic and heterogeneous neural ensembles contribute to a memory engram

2021 ◽  
Vol 67 ◽  
pp. 199-206
Author(s):  
Brian M Sweis ◽  
William Mau ◽  
Sima Rabinowitz ◽  
Denise J Cai
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nobuyoshi Suto ◽  
Amanda Laque ◽  
Genna L De Ness ◽  
Grant E Wagner ◽  
Debbie Watry ◽  
...  

Conflicting evidence exists regarding the role of infralimbic cortex (IL) in the environmental control of appetitive behavior. Inhibition of IL, irrespective of its intrinsic neural activity, attenuates not only the ability of environmental cues predictive of reward availability to promote reward seeking, but also the ability of environmental cues predictive of reward omission to suppress this behavior. Here we report that such bidirectional behavioral modulation in rats is mediated by functionally distinct units of neurons (neural ensembles) that are concurrently localized within the same IL brain area but selectively reactive to different environmental cues. Ensemble-specific neural activity is thought to function as a memory engram representing a learned association between environment and behavior. Our findings establish the causal evidence for the concurrent existence of two distinct engrams within a single brain site, each mediating opposing environmental actions on a learned behavior.


1974 ◽  
Vol 19 (7) ◽  
pp. 524-525 ◽  
Author(s):  
JAMES O'BRIEN
Keyword(s):  

2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.


Neuron ◽  
2021 ◽  
Author(s):  
Yan Zhang ◽  
Alexander J. Denman ◽  
Bo Liang ◽  
Craig T. Werner ◽  
Nicholas J. Beacher ◽  
...  

2003 ◽  
Vol 89 (6) ◽  
pp. 2889-2903 ◽  
Author(s):  
G. Christopher Stecker ◽  
Brian J. Mickey ◽  
Ewan A. Macpherson ◽  
John C. Middlebrooks

We compared the spatial tuning properties of neurons in two fields [primary auditory cortex (A1) and posterior auditory field (PAF)] of cat auditory cortex. Broadband noise bursts of 80-ms duration were presented from loudspeakers throughout 360° in the horizontal plane (azimuth) or 260° in the vertical median plane (elevation). Sound levels varied from 20 to 40 dB above units' thresholds. We recorded neural spike activity simultaneously from 16 sites in field PAF and/or A1 of α-chloralose-anesthetized cats. We assessed spatial sensitivity by examining the dependence of spike count and response latency on stimulus location. In addition, we used an artificial neural network (ANN) to assess the information about stimulus location carried by spike patterns of single units and of ensembles of 2–32 units. The results indicate increased spatial sensitivity, more uniform distributions of preferred locations, and greater tolerance to changes in stimulus intensity among PAF units relative to A1 units. Compared to A1 units, PAF units responded at significantly longer latencies, and latencies varied more strongly with stimulus location. ANN analysis revealed significantly greater information transmission by spike patterns of PAF than A1 units, primarily reflecting the information transmitted by latency variation in PAF. Finally, information rates grew more rapidly with the number of units included in neural ensembles for PAF than A1. The latter finding suggests more accurate population coding of space in PAF, made possible by a more diverse population of neural response types.


2020 ◽  
Author(s):  
Yuheng Jiang ◽  
Antonius M.J. VanDongen

ABSTRACTNew tools in optogenetics and molecular biology have culminated in recent studies which mark immediate-early gene (IEG)-expressing neurons as memory traces or engrams. Although the activity-dependent expression of IEGs has been successfully utilised to label memory traces, their roles in engram specification is incompletely understood. Outstanding questions remain as to whether expression of IEGs can interplay with network properties such as functional connectivity and also if neurons expressing different IEGs are functionally distinct. We investigated the expression of Arc and c-Fos, two commonly utilised IEGs in memory engram specification, in cultured hippocampal neurons. After pharmacological induction of long-term potentiation (LTP) in the network, we noted an emergent network property of refinement in functional connectivity between neurons, characterized by a global down-regulation of network connectivity, together with strengthening of specific connections. Subsequently, we show that Arc expression correlates with the effects of network refinement, with Arc-positive neurons being selectively strengthened. Arc positive neurons were also found to be located in closer physical proximity to each other in the network. While the expression pattern of IEGs c-Fos and Arc strongly overlaps, Arc was more selectively expressed than c-Fos. These IEGs also act together in coding information about connection strength pruning. These results demonstrate important links between IEG expression and network connectivity, which serve to bridge the gap between cellular correlates and network effects in learning and memory.


2020 ◽  
Author(s):  
Blake S. Porter ◽  
Kristin L. Hillman

AbstractWhen performing a physically demanding behavior, sometimes the optimal choice is to quit the behavior rather than persist and waste time and energy. The dorsomedial prefrontal cortex (dmPFC), consisting of the anterior cingulate cortex and secondary motor area, likely contributes towards such utility assessments. Here, we examined how rodent dmPFC single unit and ensemble level activity corresponded to changes in motivation and quitting in an effortful weight lifting task. Rats carried out two task paradigms: one that became progressively more physically demanding over time and a second fixed effort version. Rats could quit the task at any time. Dorsomedial PFC neurons were highly responsive to each behavioral stage of the task, consisting of rope pulling, reward retrieval, and reward area leaving. Activity was highest early in sessions, commensurate with the highest relative task utility, then decreased until the point of quitting. Neural ensembles showed stable task representations across the entirety of sessions. However, these representations drifted and became more distinct over the course of the session. These results suggest that dmPFC neurons represent behavioral states that are dynamically modified as behaviors lose their utility, culminating in task quitting.


Sign in / Sign up

Export Citation Format

Share Document