Steel plates rehabilitated RC beam–column joints subjected to vertical cyclic loads

2010 ◽  
Vol 24 (3) ◽  
pp. 332-339 ◽  
Author(s):  
J.Y.R. Yen ◽  
H.K. Chien
Keyword(s):  
2014 ◽  
Vol 567 ◽  
pp. 399-404 ◽  
Author(s):  
Md Ashraful Alam ◽  
Ali Sami Abdul Jabbar ◽  
Mohd Zamin Jumaat ◽  
Kamal Nasharuddin Mustapha

Repair of reinforced concrete beam with externally bonded steel plate or fibre reinforced polymer (FRP) laminate is becoming both environmentally and economically preferable rather than replacement of deficient beam. The well known advantages of external reinforcement over other methods include; low cost, ease of maintenance and the ability to strengthen part of the structure while it is still in use. The disadvantage of this method, however, is the premature debonding of the externally bonded strips which is brittle and undesired mode of failure. It is also known that debonding of the externally bonded steel plates prevents the reinforced concrete (RC) beam from reaching its full strengthening capacity. The aim of this study was to increase the scientific understanding on the behaviour of damaged reinforced concrete beams strengthened and/or retrofitted for shear using vertical steel plate fixed with adhesive and steel connectors to eliminate or delay debonding failure. Four reinforced concrete beam specimens were prepared to investigate the effects of connectors in preventing or delaying premature debonding of shear strips to restore the capacities of fully damaged beams. Three damaged beams have been repaired and strengthened with steel plates and loaded monotonically up to the maximum load capacities in order to define load–deflection relationship. It is concluded that the repairing of severely shear-damaged RC beams with steel plates by using steel and adhesive connectors can fully restore the original shear capacities of the beams.


The focus of this analysis is the review of steel plate strengthened RC beams using Single row and Stagger row bolt arrangements and to compare the bonding behaviour of different bolts arrangement under flexure. Also, to investigate the behaviour, load bearing capacity and the deflection for control and steel plate bonded beams. This research is constrained by FEM analysis utilizing ANSYS to the actions of standard RC Beam and RC beam steel plate associated.


2018 ◽  
Vol 161 ◽  
pp. 146-160 ◽  
Author(s):  
Yousef A. Al-Salloum ◽  
Mohammed A. Alrubaidi ◽  
Hussein M. Elsanadedy ◽  
Tarek H. Almusallam ◽  
Rizwan A. Iqbal

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zhenbao Li ◽  
Yashuang Liu ◽  
Hua Ma ◽  
Qianqian Wang ◽  
Zhenyun Tang

A concrete-filled steel tube (CFST) column has the advantages of high bearing capacity, high stiffness, and good ductility, while reinforced concrete (RC) structure systems are familiar to engineers. The combinational usage of CFST and RC components is playing an important role in contemporary projects. However, existing CFST column-RC beam joints are either too complex or have insufficient stiffness at the interface, so their practical engineering application has been limited. In this study, the results of a practical engineering project were used to develop two kinds of CFST column-RC beam joints that are connected by vertical or U-shaped steel plates and studs. The seismic performance of full-scale column-beam joints with a shear span ratio of 4 was examined when they were subjected to a low-cyclic reversed loading test. The results showed a plump load-displacement curve for the CFST column-RC beam joint connected by steel plates and studs, and the connection performance satisfied the building code. The beam showed a bending failure mode similar to that of traditional RC joints. The failure area was mainly concentrated outside the steel plate, and the plastic hinge moved outward from the ends of the beam. When the calculated cross section was set at the ends of the beam, the bending capacity of joints with the vertical or U-shaped steel plates and studs increased compared to the RC joint. However, when the calculated cross section was set to the failure area, the capacity was similar to that of the RC joint. The proposed joints showed increases in the energy dissipation, average energy dissipation coefficient, and ductility coefficient compared to the RC joint.


Sign in / Sign up

Export Citation Format

Share Document