scholarly journals Mechanical Properties of Strengthened RC Beams using Steel Plates

The focus of this analysis is the review of steel plate strengthened RC beams using Single row and Stagger row bolt arrangements and to compare the bonding behaviour of different bolts arrangement under flexure. Also, to investigate the behaviour, load bearing capacity and the deflection for control and steel plate bonded beams. This research is constrained by FEM analysis utilizing ANSYS to the actions of standard RC Beam and RC beam steel plate associated.

Author(s):  
Quoc Phong Tran ◽  

The article presents the results of calculation of the load-bearing capacity of connections of LVL structures under tension using cylindrical dowels in trusses and frames. The description of calculation schemes for determining the load-bearing capacity of connections with different location and sizes of steel plates in the connection is given. The influence of steel plate placement on the distribution of forces in the cross-section of samples is investigated. Based on the results of analytical and experimental studies, the load-bearing capacity of dowels during bending is considered, as well as the mechanism of wooden structures` fracture during chipping. A comparative analysis of the effectiveness of different schemes of dowel connections with three steel plates under tension is carried out.


2011 ◽  
Vol 311-313 ◽  
pp. 1941-1944
Author(s):  
Gui Bing Li ◽  
Yu Gang Guo ◽  
Xiao Yan Sun

intermediate crack-induced debondingis one of the most dominant failure modes in FRP-strengthened RC beams. Different code models and provisions have been proposed to mitigateintermediate crack-induced debondingfailure.However, these models and provisions can not mitigate this failure mode effectively. Recnetly, new models have been proposed to solve this problem. Out of all the existing models, four typical ones are investigated in the current study. A comprehensivecomparison among these models is carried out in order to evaluate their performance and accuracy. Test results offlexural specimens with intermediate crack-induced debonding failurecollected from the existing literature are used in the current comparison. The effectivenessand accuracy of each model have been evaluated based on these experimental results. It is shown that the current modals are all conservative and inadequite to effectively mitigate intermediate crack-induced debonding in flexurally strengthened members.


2015 ◽  
Vol 19 (4) ◽  
pp. 99-110 ◽  
Author(s):  
Piotr Szewczyk ◽  
Maciej Szumigała

Abstract This paper presents the numerical modelling of strengthening a steel-concrete composite beam. The main assumption is that the strengthening is not the effect of the state of a failure of a structure, but it resulted from the need to increase the load-bearing capacity and stiffness of the structure (for example: due to a change in the use of the object). The expected solution is strengthening without the necessity to completely unload the structures (to reduce the scope of works, the cost of modernization and to shorten the time). The problem is presented on the example of a composite beam which was strengthened through welding a steel plate to the lower flange of the steel beam. The paper describes how energy parameters are used to evaluate the efficiency of structures’ strengthening and proposes an appropriate solution.


2019 ◽  
Vol 29 (4) ◽  
pp. 141-148 ◽  
Author(s):  
Krzysztof Wierzbicki ◽  
Maciej Szumigała

Abstract The article analyses the method of enhancing a steel beam by adding additional steel members like ribs. They are rigidly connected with both flanges in a plane parallel to the web. That plates reduces warping during in-plane bending of steel beam under lateral-torsional bucking. Different thicknesses of steel plates used as ribs and different cross-sections were taken into account. Calculations were conducted using FEM and ABAQUS CAE environment. The outcomes were compared with ones from previous studies which concerned an influence of endplates on load-bearing capacity of an I-beam.


2018 ◽  
Vol 15 (5) ◽  
pp. 760-773 ◽  
Author(s):  
V. A. Utkin ◽  
P. N. Kobzev ◽  
E. G. Shatunova

Introduction. Experience in the design and construction of beam structures of wooden bridges with composite girders indicates the possibility of increasing the bearing capacity and the length of the overlapped spans.Materials and methods. The most rational load-bearing elements of composite girders can serve as the logs edged on two edges with the diameter of 28 to 32 cm with the maximum use of the most durable layers of sapwood and dowel connections of steel plates with blind cylindrical nags.Results. In contrast to the compounds of composite girders on lamellar nails, the proposed connection greatly simplifies the process of making the composite girders. Such connection also allows using the logging along the length, combining into three or four tiers and increasing the length of the span.Discussion and conclusion. The proposed solutions increase the load-bearing capacity of composite girders and allow them to be used in the structures of wooden bridges under modern automotive loads. Moreover, the calculation method of composite girders on the basis of the method of forces and discrete placement in the beams between the logs of concentrated elastic-datum shear bonds is developed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heyuan Huang ◽  
Xuanjia Zhang ◽  
Zhicheng Dong ◽  
Dong Wang

AbstractWith the continuous improvement of the mechanical properties of composite materials, the adhesive interface performance of composite T-stiffened panels has become a critical factor in determining the overall structural strength. However, little work has been reported on the mechanical properties of adhesive interfaces in composite T-stiffened panels under lateral bending and shear loading. Especially, there is no clear explanation on the damage evolution law of structural properties for the interface with defects, which greatly influenced the use of T-stiffened composite structures. In this paper, the mechanical properties of T1100/5405 composite T-stiffened laminates under lateral bending and shear loading are experimentally and numerically investigated. The load-bearing capacities for the panels with intact and defected adhesive interfaces are compared, the damage evolution law of typical T-stiffened structures is further explored. Based on the continuum damage model (CDM) and the cohesive zone model (CZM), the constitutive models of the adhesive layer and the composite material are established respectively. Good agreements between experimental and numerical profiles illustrate that damages mainly occur on the loading side and the corner of the L-type ribs under lateral bending conditions, while damages extend from both sides of the interface layer to the center under shear loading. When a prefabricated defect exists, damages extend from the defect location along the loading direction. At the same time, the analysis shows that the lay-up of the surface layer, the chamfer radius, and the width of T-type ribs have a great influence on the structural load-bearing capacity, but less on the damage evolution form.


2018 ◽  
Vol 8 (5) ◽  
pp. 3492-3495
Author(s):  
A. Alzahougi ◽  
M. Elitas ◽  
B. Demir

Based on this study, the effects of the different types of welding currents and electrode pressures on the tensile shear properties of the resistance spot welding (RSW) which are the joints of the commercial DP600 sheet steel are now been investigated. In addition to the fact that the electrode pressure is not much of a popular piece or topic of discussion in the literature, the expression of the mechanical properties of these commercial materials (most importantly in the DP and in the high strength steels). These factors that are known to be affecting the strength of the material are dispute. In the tensile shear tests of this welded joints; the tensile shear force and the maximum displacement were utilized to characterize the performance of the welding processes. The nugget diameter has been measured to create a clear definition of the RSW physical properties. The experimental results show that the tensile shear load bearing capacity is bond to increase as the electrode pressure increases based on a value in both the welding currents and the decrease at the higher values. The low current value at low and at the highest electrode pressures; during the high current value which could be at the middle of the electrode pressure values it can exhibit the superior mechanical properties. The effect of this electrode pressure on the tensile shear load bearing capacity is bond to increase as the welding current increases as well. This, also been assessed and examined based on the low carbon content.


Author(s):  
Jasper Foolen ◽  
Corrinus C. van Donkelaar ◽  
Sarita Soekhradj-Soechit ◽  
Rik Huiskes ◽  
Keita Ito

Fibrous tissues have the ability to adapt to their mechanical environment. Adaptation can be guided by the direction and magnitude of the imposed load, leading to structural changes and altered mechanical properties. This is important for proper functioning of all fibrous tissues, especially those with a load bearing capacity such as tendons, ligaments, and tissue-supporting fibrous sheets. The mechanism by which fibrous tissues adapt to alterations in their mechanical environment remains unresolved, and such knowledge will be helpful to guide repair and engineering of artificial fibrous tissues.


1999 ◽  
Vol 5 (1) ◽  
pp. 73-98 ◽  
Author(s):  
D. Van Gemert ◽  
E.-E. Toumbakari ◽  
L. Schueremans

Abstract Recent developments in injection grouts used for consolidation are proposed. Special compositious have been developed, made out of lime, cement and pozzolan. The stability, the viscosity and the mechanical properties are illustrated. Comparison is made with polymer grouts and with double injections using mineral and polymer grouts consequently. The influence of injections on the load-bearing capacity of the masonry is calculated. Some elements for the judgment of the safety and reliability of masonry structures are pointed out.


Sign in / Sign up

Export Citation Format

Share Document