Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS)

2012 ◽  
Vol 28 (1) ◽  
pp. 421-426 ◽  
Author(s):  
Gurpreet Singh ◽  
Rafat Siddique

Abstract: Used or Waste Foundry Sand can be utilized as an alternative for fine aggregate in conventional concrete. WFS or UFS can be used in large volume by partially replacing sand in construction industries. Here the strength properties of M25 and M60 grade concrete replaced by WFS by 0,10,20,30,40 and 50 percent w/w of fine aggregate is evaluated by measuring compression, split tensile and flexural strength at 7 days and 14 days.


2019 ◽  
Vol 1 (6) ◽  
pp. 346-352
Author(s):  
Easwaran P ◽  
Kalaivani M ◽  
Ramesh S ◽  
Ranjith R

The management of solid industrial waste is of big global concern nowadays. The majority of industries are not interested in the treatment and safe disposal of industrial waste due to its high cost involvements, causing environmental and other ecological impacts. The disposal of waste foundry sand is of prime importance due to the big volume produced from the metal casting industries all over the world as well as the waste bottom ash produced from the thermal power plant. The possibility of substituting natural fine aggregate with industrial by-products such as bottom ash and foundry sand offers technical, economic and environmental advantages which are of greater importance in the present context of sustainability in construction sector. Concrete is the most important engineering material and the addition of some other material may change the properties of concrete. Studies have been carried out to investigate the possibility of utilizing the board range of material as partial replacement material for cement and aggregate in the production of concrete. Natural fine aggregate are becoming scarcity because of its huge utility in various constitution process the possibility of substituting natural fine aggregate with industrial by product such as waste foundry sand and bottom ash in concrete. This study investigate the effect of waste of bottom ash and foundry sand is equal quantities as partial replacement of fine aggregate in 0%, 20%, 30%, 40% on concrete properties such as compression strength and split tensile strength. This study also aims to encourage industries to start commercial production of concrete products using waste bottom ash and foundry sand.


2020 ◽  
Vol 249 ◽  
pp. 118761 ◽  
Author(s):  
Ehsan Yaghoubi ◽  
Arul Arulrajah ◽  
Mohammadjavad Yaghoubi ◽  
Suksun Horpibulsuk

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manjunatha M. ◽  
Rakshith S.G.K.

Purpose Waste foundry sand (WFS) is a by-product of the metal casting industries and is used for land filling purposes. Disposing of waste creates problems to environment and increases disposal values. To reduce environmental pollutions and solving disposal problems, several authors in worldwide are carried out research work by partial and complete replacing of natural sand with WFS in concrete mixtures. It is found that WFS can be used for production of structural grade concrete. The mechanical characteristics and flexural properties of RC beams has been reviewed in this paper. From this literature review, it has been noticed that there are improvements in concrete strength properties with WFS. Design/methodology/approach The results of various properties of concrete have been discussed in this review articles such as compressive strength, split tensile strength, flexural strength, modulus of elasticity, SEM micro-structures and flexural strength properties of RC beams. Findings From the literature review, it is found that there is gap of research on flexural behavior of reinforced concrete beam with WFS. Originality/value By using WFS effectively, the environmental pollutions and dumping of waste can be reduced. WFS can be successfully used in structural concrete members.


2021 ◽  
Vol 167 ◽  
pp. 105437
Author(s):  
Mohd Moiz Khan ◽  
S.M. Mahajani ◽  
G.N. Jadhav ◽  
Rohit Vishwakarma ◽  
Vithoba Malgaonkar ◽  
...  

2021 ◽  
Vol 277 ◽  
pp. 122267
Author(s):  
Marcelo Heidemann ◽  
Helena Paula Nierwinski ◽  
Daniel Hastenpflug ◽  
Breno Salgado Barra ◽  
Yader Guerrero Perez

Sign in / Sign up

Export Citation Format

Share Document