Effect of confinement pressure on the nonlinear-viscoelastic response of asphalt concrete at high temperatures

2013 ◽  
Vol 47 ◽  
pp. 779-788 ◽  
Author(s):  
Eisa Rahmani ◽  
Masoud K. Darabi ◽  
Rashid K. Abu Al-Rub ◽  
Emad Kassem ◽  
Eyad A. Masad ◽  
...  
Author(s):  
Mohammad Bazzaz ◽  
Masoud K. Darabi ◽  
Dallas N. Little ◽  
Navneet Garg

This paper proposes a straightforward procedure to characterize the nonlinear viscoelastic response of asphalt concrete materials. Furthermore, a model is proposed to estimate the nonlinear viscoelastic parameters as a function of the triaxiality ratio, which accounts for both confinement and deviatoric stress levels. The simplified procedure allows for easy characterization of linear viscoelastic (LVE) and nonlinear viscoelastic (NVE) responses. First, Schapery’s nonlinear viscoelastic model is used to represent the viscoelastic behavior. Dynamic modulus tests are performed to calibrate LVE properties. Repeated creep-recovery tests at variable deviatoric stress levels (RCRT-VS) were designed and conducted to calibrate the nonlinear viscoelastic properties of four types of mixtures used in the Federal Aviation Administration’s National Airport Pavement and Materials Research Center test sections. The RCRT-VS were conducted at 55°C, 140 kPa initial confinement pressure, and wide range of deviatoric stress levels; mimicking the stress levels induced in a pavement structure under traffic. Once calibrated, the model was validated by comparing the model predictions and experimental measurements at different deviatoric stress levels. The predictions indicate that the proposed method is capable of characterizing NVE response of asphalt concrete materials.


2010 ◽  
Vol 160-162 ◽  
pp. 1476-1481 ◽  
Author(s):  
Wu Lian Zhang ◽  
Xin Ding ◽  
Xu Dong Yang

The nonlinear viscoelastic response of a PVC-Coated Fabric has been studied. For the needs of the present study, creep and recovery tests in tension of both the warp and the weft directions at the different stress levels were executed while measurements were made of the creep and recovery strain response of the system. For the description of the viscoelastic behaviour of the material, Schapery’s nonlinear viscoelastic model was used. For the description of the nonlinear viscoelastic response and the determination of the nonlinear parameters, a method by using a combination of analytical formulations and numerical procedures based on a modified version of Schapery’s constitutive relationship where an instantaneous plastic and a transient plastic terms were added, has been developed. The method has been successfully applied to the current tests.


Langmuir ◽  
2018 ◽  
Vol 34 (7) ◽  
pp. 2489-2496 ◽  
Author(s):  
Salomé Mielke ◽  
Taichi Habe ◽  
Mariam Veschgini ◽  
Xianhe Liu ◽  
Kenichi Yoshikawa ◽  
...  

2017 ◽  
Vol 131 ◽  
pp. 1-15 ◽  
Author(s):  
Eisa Rahmani ◽  
Masoud K. Darabi ◽  
Dallas N. Little ◽  
Eyad A. Masad

Author(s):  
Roger W. Chan ◽  
Thomas Siegmund

Previous empirical studies have shown that vocal fold tissues exhibit nonlinear viscoelastic behaviors under different loading conditions. Hysteresis and strain rate-dependence of stress-strain curves have been observed for different layers of vocal fold tissues when subjected to cyclic tensile loading [1,2]. Nonlinear viscoelastic response has also been described for vocal fold tissues subjected to constant strain and constant stress tests under both tensile loading and large-strain shear deformation conditions [3,4]. These findings cannot be adequately described by many of the traditional constitutive formulations of linear and quasilinear viscoelasticity. For instance, models based on Y. C. Fung’s quasilinear viscoelastic theory typically apply two separate functions to describe the time dependence and the strain dependence of stress (e.g., the reduced relaxation function G(t) and the elastic response σe(ε), respectively), and combine the two functions by the Boltzmann superposition principle [5]. Such formulations assume that time dependence and strain dependence can be separated. However, recently obtained stress relaxation data of vocal fold tissues under various magnitudes of applied shear strain indicated that they are not separable, as relaxation became slower with increasing strain [4]. This paper attempts to characterize some nonlinear viscoelastic behaviors of vocal fold tissues under tensile and shear deformation conditions based on an implementation of the Bergstrom-Boyce model [6,7].


Sign in / Sign up

Export Citation Format

Share Document