Constitutive modeling of coupled aging-viscoelastic response of asphalt concrete

2017 ◽  
Vol 131 ◽  
pp. 1-15 ◽  
Author(s):  
Eisa Rahmani ◽  
Masoud K. Darabi ◽  
Dallas N. Little ◽  
Eyad A. Masad
Author(s):  
J. Murali Krishnan ◽  
K. R. Rajagopal

Different kinds of hot mix asphalt mixtures are used in highway and runway constructions. Each of these mixtures cater to specific needs and differ from each other in the type and percentage of aggregates and asphalt used, and their response can be markedly different. Constitutive models used in the literature do not differentiate between these different kinds of mixtures and use models which treat them as if they are one and the same. In this study, we propose constitutive models for two different kinds of hot mix asphalt, viz., asphalt concrete and sand asphalt. We use a framework for materials that possess multiple natural configurations for deriving the constitutive equations. While asphalt concrete is modeled as a two constituent mixture, sand asphalt is modeled as a single constituent mixture due to the peculiarity in its makeup. In this study, we present a unified approach for deriving models for these different kind of mixtures. In a companion paper, we compare the predictions of the model for a compressive creep test with available experimental results.


Author(s):  
J. Murali Krishnan ◽  
K. R. Rajagopal

In the earlier paper, we developed constitutive relations for two kinds of hot mix asphalt, viz., asphalt concrete and sand asphalt using the framework of materials with multiple natural configurations. In the present paper, we apply the framework that we developed for sand asphalt to study compressive creep experiments. Experimental studies of Wood and Goetz (1959) are used to compare with the predictions of the model.


Author(s):  
Mohammad Bazzaz ◽  
Masoud K. Darabi ◽  
Dallas N. Little ◽  
Navneet Garg

This paper proposes a straightforward procedure to characterize the nonlinear viscoelastic response of asphalt concrete materials. Furthermore, a model is proposed to estimate the nonlinear viscoelastic parameters as a function of the triaxiality ratio, which accounts for both confinement and deviatoric stress levels. The simplified procedure allows for easy characterization of linear viscoelastic (LVE) and nonlinear viscoelastic (NVE) responses. First, Schapery’s nonlinear viscoelastic model is used to represent the viscoelastic behavior. Dynamic modulus tests are performed to calibrate LVE properties. Repeated creep-recovery tests at variable deviatoric stress levels (RCRT-VS) were designed and conducted to calibrate the nonlinear viscoelastic properties of four types of mixtures used in the Federal Aviation Administration’s National Airport Pavement and Materials Research Center test sections. The RCRT-VS were conducted at 55°C, 140 kPa initial confinement pressure, and wide range of deviatoric stress levels; mimicking the stress levels induced in a pavement structure under traffic. Once calibrated, the model was validated by comparing the model predictions and experimental measurements at different deviatoric stress levels. The predictions indicate that the proposed method is capable of characterizing NVE response of asphalt concrete materials.


Author(s):  
Masoud K. Darabi ◽  
Rashid K. Abu Al-Rub ◽  
Eyad A. Masad ◽  
Dallas N. Little

2013 ◽  
Vol 47 ◽  
pp. 779-788 ◽  
Author(s):  
Eisa Rahmani ◽  
Masoud K. Darabi ◽  
Rashid K. Abu Al-Rub ◽  
Emad Kassem ◽  
Eyad A. Masad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document