Pore structure characterization of early-age cement pastes blended with high-volume fly ash

2018 ◽  
Vol 189 ◽  
pp. 934-946 ◽  
Author(s):  
Haitao Zhao ◽  
Xiao Qin ◽  
Jiaping Liu ◽  
Liangliang Zhou ◽  
Qian Tian ◽  
...  
2012 ◽  
Vol 42 (1) ◽  
pp. 194-204 ◽  
Author(s):  
Qiang Zeng ◽  
Kefei Li ◽  
Teddy Fen-chong ◽  
Patrick Dangla

2021 ◽  
Vol 33 ◽  
pp. 101638 ◽  
Author(s):  
Qian Huang ◽  
Xiaohong Zhu ◽  
Dongsheng Liu ◽  
Liang Zhao ◽  
Min Zhao

2010 ◽  
Vol 257 (3) ◽  
pp. 762-768 ◽  
Author(s):  
Qiang Zeng ◽  
Kefei Li ◽  
Teddy Fen-Chong ◽  
Patrick Dangla

2021 ◽  
pp. 1-13
Author(s):  
Zhiyuan Zhou ◽  
Massoud Sofi ◽  
Aocheng Zhong ◽  
Amin Shahpasandi ◽  
Marvel Cham Sarabia ◽  
...  

2000 ◽  
Vol 22 (6) ◽  
pp. 445-452 ◽  
Author(s):  
Ya Mei Zhang ◽  
Wei Sun ◽  
Han Dong Yan

2013 ◽  
Vol 96 (3) ◽  
pp. 900-906 ◽  
Author(s):  
Shane Donatello ◽  
Ana Fernández-Jimenez ◽  
Angel Palomo

2012 ◽  
Vol 2290 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Lisa R. Gurney ◽  
Dale P. Bentz ◽  
Taijiro Sato ◽  
W. Jason Weiss

High-volume fly ash (HVFA) concretes are attractive not only because they reduce cement content and the associated greenhouse gases, but also because they avoid landfilling excessive quantities of fly ash. These sustainability benefits are often tempered by practical constructability limitations that may exist for HVFA concretes: retardation and diminution of the early-age reaction, delay in setting (and finishing operations), and lower early-age strength. This paper explores the alleviation of these deficiencies in HVFA mixtures by the incorporation of fine limestone powders into ternary blends. Isothermal calorimetry and Vicat needle penetration measurements are employed to assess reaction rates and setting times, respectively. A systematic variation of the content and fineness of the limestone powder in mixtures containing either a Class C or a Class F fly ash indicates that setting times are linearly correlated with the surface area supplied by the limestone. Comparison of a limestone system to a system containing an inert titanium dioxide of similar particle size indicates that the acceleration and amplification effects of the limestone can be attributed to both physical (nucleation) and chemical (additional calcium ions) processes. The results indicate that ternary blends with 40% of the cement by volume replaced by 30% to 35% fly ash and 5% to 10% limestone at a constant water volume fraction can be achieved without significant delay in setting.


Sign in / Sign up

Export Citation Format

Share Document