limestone powder
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 167)

H-INDEX

29
(FIVE YEARS 8)

Author(s):  
Catherine Campbell ◽  
Gareth Jackson ◽  
Mohammed Sonebi ◽  
Su Taylor

The aim of this paper is to investigate two different concrete mixes, one with Limestone Powder (LSP) and the other with Ground Granulated Blast-Furnace Slag (GGBS), both mixes containing superplasticizer, in order to analyse their compressive strengths at 7 and 28 days, their abrasion resistance and slip resistance. The two mixes are treated with two different surface protection finishers, applied on the surface after the concrete has cured and analysis of how these finishers affect the abrasion resistance and slip resistance of the concrete is discussed.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 204
Author(s):  
Yi Han ◽  
Seokhoon Oh ◽  
Xiao-Yong Wang ◽  
Run-Sheng Lin

At present, reducing carbon emissions is an urgent problem that needs to be solved in the cement industry. This study used three mineral admixtures materials: limestone powder (0–10%), metakaolin (0–15%), and fly ash (0–30%). Binary, ternary, and quaternary pastes were prepared, and the specimens’ workability, compressive strength, ultrasonic pulse speed, surface resistivity, and the heat of hydration were studied; X-ray diffraction and attenuated total reflection Fourier transform infrared tests were conducted. In addition, the influence of supplementary cementitious materials on the compressive strength and durability of the blended paste and the sustainable development of the quaternary-blended paste was analyzed. The experimental results are summarized as follows: (1) metakaolin can reduce the workability of cement paste; (2) the addition of alternative materials can promote cement hydration and help improve long-term compressive strength; (3) surface resistivity tests show that adding alternative materials can increase the value of surface resistivity; (4) the quaternary-blended paste can greatly reduce the accumulated heat of hydration; (5) increasing the amount of supplementary cementitious materials can effectively reduce carbon emissions compared with pure cement paste. In summary, the quaternary-blended paste has great advantages in terms of durability and sustainability and has good development prospects.


2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Chang-Seon Shon ◽  
Aidyn Tugelbayev ◽  
Ramazan Shaimakhanov ◽  
Nariman Karatay ◽  
Dichuan Zhang ◽  
...  

Developing sustainable concrete with less ordinary Portland cement is a growing issue in the construction industry. Incorporating industrial by-products (such as fly ash or slag) or municipal solid wastes (such as waste glass or recycled concrete aggregate) into the concrete becomes an effective way to reduce the consumption of natural sources and carbon dioxide emission if a proper mix design is provided. The present study examines the influence of the combined use of off-ASTM Class F fly ash (FFA) and waste limestone powder (LSP) on flowability, compressive strength, and expansion characteristics of mortar mixtures containing waste glass sand (WGS). FFA and LSP were used as cement replacement while WGS was used as partial reactive siliceous river sand replacement. Material variables included different WGS replacement ratios (25%, 50%, and 75%) with river sand, LSP contents (25%, 50%, and 75%), FFA contents (15%, 30%, and 45%), and different combinations of FFA-LSP (15–10%, 15–15%, 15–30%, and 15–35%). It is shown that the single use of FFA or LSP reduces both compressive strength and flowability of mortar mixture as its replacement level increases. However, mixtures combined with FFA and LSP provide higher or comparable strength to the single LSP or FFA mixture. For the expansion characteristics due to alkali-silica reaction, the single-use of more than 30% FFA or 75% LSP has less than 0.1% expansion, which is a non-reactive aggregate criterion based on the C1260/C1567 when the test period is extended to 56 days. Moreover, the combination of FFA and LSP has a considerable reduction in expansion rate compared to the single FFA or LSP mixture.


2021 ◽  
pp. 1-28
Author(s):  
Surong Luo ◽  
Zhen Wang ◽  
Qingnan Gong ◽  
Dehui Wang

To clarify the role of temperature in the thaumasite formation of cement mortar under magnesium sulfate solution at two different temperature, the corrosion products and microstructure of cement-based materials with different amounts and particle sizes of limestone powder (LP) were quantitatively analyzed by Fourier Transform Infra-Red (FTIR), thermogravimetric analysis (TGA), X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). At 5oC, the main corrosion product of cement mortar was gypsum and thaumasite. At 20°C, the main corrosion products of cement mortar were gypsum and ettringite. When the temperature increased from 5°C to 20°C, the contents of ettringite, thaumasite and gypsum changed from 0.3%, 12.3% and 64.6% to 4.6%, 0% and 57.0%, respectively. The formation of thaumasite was the combination of direct reaction with ettringite transformation. The incorporation of LP accelerated the corrosion of mortars, and the change coefficient of compressive strength of mortars decreased from 100% to 47.3% when its content increased from 0% to 30%. Low temperature and incorporation of finer limestone powder enhanced the corrosion of magnesium sulfate solution.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7254
Author(s):  
Maja Kępniak ◽  
Piotr Woyciechowski ◽  
Wojciech Franus

Modification of concrete with waste materials is an increasingly common process, and they are primarily used as a partial substitution for cement. In the case of inert or nearly inert additions according to EN 206, the effectiveness of such a modification mainly concerns ecological aspects and, only to a small extent, mechanical properties. This article analyses the effect of modifying cement concrete with waste limestone powder as a partial substitution for fine aggregate. The analysed waste arises as a result of the accumulation of dust produced during the initial preparation of aggregate for the production of hot mix asphalt (HMA). In order to analyse the effect of waste on compressive strength, an experimental design was prepared with variable substitution levels and variable water/cement ratios. Compressive strength tests were performed after 28 to 90 days. Statistical analysis of the results was performed. Microscopic evaluation of the fractures of the samples was carried out to clarify the mechanism of transition zone enhancement, which resulted in an increase of compressive strength of the composite.


Sign in / Sign up

Export Citation Format

Share Document