The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars

2018 ◽  
Vol 190 ◽  
pp. 108-119 ◽  
Author(s):  
Danial Nasr ◽  
Amir Hossein Pakshir ◽  
Hossein Ghayour
2013 ◽  
Vol 712-715 ◽  
pp. 905-908
Author(s):  
Qun Pan ◽  
Bin Zhu ◽  
Xiao Huang ◽  
Lin Liu

Properties of alkali-activated slag cements compounded with soluble glasse with a high silicate modulus Ms=2.6 were detailedly studied in this paper, including compressive strength and flexure strength characterictics at the ages of 3,7,28 days and flow values of fresh cement mixtures on a jolting table. As a result, with the compressive strength at the age of 28 days of 95.6-107.8 MPa has been developed, and the flow values and strength characteristics of alkali-activated slag cement mortars increased with increase in a water to cement (alkaline activator solution to slag) ratio, and the flow value (determined on the cement mortar mixtures) would reach 145 mm. Moreover, the development speed of strength characteristics of mortar specimens would be affected negatively by increasing of water demand (requirement).


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Chen ◽  
Jun Wang ◽  
Jinyou Zhao

Extensive research into alkali-activated slag as a green gel material to substitute for cement has been done because of the advantages of low-carbon dioxide emissions and recycling of industrial solid waste. Alkali-activated slag usually has good mechanical properties, but the too fast setting time restricted its application and promotion. Changing the composition of alkaline activator could optimize setting time, usually making it by adding sodium carbonate or sodium sulfate but this would cause insufficient hydration reaction power and hinder compressive strength growth. In this paper, the effect of sodium aluminate dosage as an alkaline activator on the setting time, fluidity, compressive strength, hydration products, and microstructures was studied through experiments. It is fair to say that an appropriate amount of sodium aluminate could obtain a suitable setting time and better compressive strength. Sodium aluminate provided enough hydroxyl ions for the paste to promote the hydration reaction process that ensured obtaining high compressive strength and soluble aluminium formed precipitate wrapped on the surface of slag to inhibit the hydration reaction process in the early phase that prolonged setting time. The hydration mechanism research found that sodium aluminate played a key role in the formation of higher cross-linked gel hydration products in the late phase of the process. Preparing an alkali-activated slag with excellent mechanical properties and suitable setting time will significantly contribute to its application and promotion.


2014 ◽  
Vol 525 ◽  
pp. 491-494
Author(s):  
Dae Hyun Kang ◽  
Hye Ran Kim ◽  
Hyun Do Yun

In this paper, an experimental investigation was carried out to examine the influence of hooked end steel fiber volume fraction and curing conditions on the compressive performance of concrete produced by using ordinary portland cement (OPC) and alkali-activated slag (AAS). Three different volume fractions of 0.5%, 1.0% and 1.5% were used in OPC and AAS concrete mixtures. Cylindrical specimens with 100 x 200mm were tested for compressive behavior of both concretes at 3, 7 and 28 days of curing age. Test results showed that curing conditions had a significant effect on compressive properties in the hardened OPC and AAS concretes. The addition of steel fibers generated a decrease in compressive strength of OPC while an increase in the compressive strength of AAS concrete was shown with adding steel fiber.


2014 ◽  
Vol 672-674 ◽  
pp. 1823-1827
Author(s):  
Xiao Wei Sun ◽  
Wan Yang Niu ◽  
Ling Ling Wang

These are many factors that can influence the properties of alkali-activated slag cementitious material, such as the modulus and content of water glass, water-cement ratio, curing conditions, and so forth. The rules that how these factors affect setting time and strength of the material are systematically discussed in the paper. It is found that the setting time of the material depends on the concentration of alkaline ions in solution; The material will have the best strength when the modulus and content of water glass are 1.4 and 8%, respectively. The curing temperature increase will be helpful to compressive strength increase.


Sign in / Sign up

Export Citation Format

Share Document