Influence of sustained load on corrosion characteristics of reinforced concrete beams under galvanostatic accelerated corrosion

2019 ◽  
Vol 215 ◽  
pp. 30-42 ◽  
Author(s):  
Peng Zhao ◽  
Gang Xu ◽  
Qing Wang ◽  
Guangjie Tang
2012 ◽  
Vol 535-537 ◽  
pp. 1803-1806
Author(s):  
Shun Bo Zhao ◽  
Peng Bing Hou ◽  
Fu Lai Qu

An experimental study was carried out to examine the non-uniform corrosion of plain steel bars in reinforced concrete beams partially placed in 5% sodium chloride solution under conditions of accelerated corrosion. 4 reinforced concrete beams with different concrete strength were made. The crack distributions of the beams due to pre-loads and expansion of corrosion product, and the sectional corrosion characteristics of plain steel bars are described in detail. The sectional area loss relating to mass loss and change along pure bending length of the beams are discussed. These can be used as the basis of test for further studies to build the numerical models of serviceability of corroded reinforced concrete beams.


2010 ◽  
Vol 37 (8) ◽  
pp. 1045-1056 ◽  
Author(s):  
Christopher Suffern ◽  
Ahmed El-Sayed ◽  
Khaled Soudki

This paper reports experimental data on the structural performance of disturbed regions in reinforced concrete beams with corrosion damage to the embedded steel stirrups. A total of 15 reinforced concrete beams were constructed and tested. The test beams were 350 mm deep, 125 mm wide, and 1850 mm long. The beams were tested in three-point bending under a simply supported span of 1500 mm. Nine beams had the embedded stirrups subjected to accelerated corrosion. The test variables were the corrosion damage level and the shear span-to-depth ratio. The test results indicated that the corroded beams exhibited reduced shear strength in comparison to the uncorroded control specimens. The shear strength reduction was up to 53%. Furthermore, the reduction in shear strength due to the corrosion was found to be greater at smaller shear span-to-depth ratios.


Reinforced concrete structures are subjected to deterioration due to many factors such as corrosion of reinforcing steel. Ultimate strengths of structural elements can be greatly affected by these deteriorating factors. There are numerous methods and techniques used to protect these structural elements. The mortar layer (Plastering) is considered the first defense line against all the deteriorating factors. The main goal of this research is to investigate to what extent the plastering layer can protect reinforced concrete beams against corrosion. The aim of the experimental program is to study the effect of plastering layer on corrosion resistance of reinforced concrete beams. Four reinforced concrete beams (1002001100 mms) and four Lollypop specimens (cylinders 100200 mms) were tested and described as follows: • A beam and a lollypop specimen without any plastering layer (control). • A beam and a lollypop specimen with traditional plastering layer (cement + sand + water). • A beam and a lollypop specimen with modified plastering (traditional plastering + waterproof admixtures). • A beam and a lollypop specimen with painted and modified plastering layer (traditional plastering + waterproof admixtures + external waterproof paint). These eight specimens were subjected to corrosion using accelerated corrosion technique, after that the four beams were tested in flexure under three point load arrangement while the four lollypops were used to calculate the total mass loss due to accelerated corrosion. The test results were used to figure out the effect of plastering layer on corrosion resistance of RC beams.


Structures ◽  
2019 ◽  
Vol 19 ◽  
pp. 394-410 ◽  
Author(s):  
Mohammed Haloob Al-Majidi ◽  
Andreas P. Lampropoulos ◽  
Andrew B. Cundy ◽  
Ourania T. Tsioulou ◽  
Salam Alrekabi

2013 ◽  
Vol 56 ◽  
pp. 457-465 ◽  
Author(s):  
Lee Higgins ◽  
John P. Forth ◽  
Anne Neville ◽  
Rod Jones ◽  
Trevor Hodgson

Sign in / Sign up

Export Citation Format

Share Document