A systematic study on polymer modified alkali-activated slag – Part I: Stability analysis of colloidal polymer dispersion in sodium water glass

2019 ◽  
Vol 221 ◽  
pp. 40-49 ◽  
Author(s):  
Zichen Lu ◽  
Jan-Philip Merkl ◽  
Christian Schmidtke ◽  
Maxim Pulkin ◽  
Florian Deschner ◽  
...  
2020 ◽  
Vol 166 ◽  
pp. 06001
Author(s):  
Pavlo Krivenko ◽  
Oleh Petropavlovskyi ◽  
Oleksandr Kovalchuk ◽  
Igor Rudenko ◽  
Oleksandr Konstantynovskyi

The paper is devoted to mitigation of steel reinforcement corrosion in alkali-activated slag cement (further, AASC) concretes, based on soluble sodium silicates (further, SSS’s), obtained from high consistensy concrete mixes. Enhancement of AASC fine concretes crack resistance due to modification by complex shrinkage-reducing additives (further, SRA’s) based on surfactants and trisodium phosphate Na3PO .12H2O (further, TSP) was proposed for mitigation of steel reinforcement corrosion. SSS’s were presented by sodium metasilicate (silica modulus 1.0, dry state) and water glass (silica modulus 2.9, density 1400 kg/m3). In case of sodium metasilicate the application of SRA composition “ordinary portland cement clinker – TSP – sodium lignosulphonate – sodium gluconate” provides enhancement of crack resistance starting from early age structure formation with restriction of drying shrinkage from 0,984 to 0,713 mm/m after 80 d. The effect is caused by reduction of water and by higher volume of crystalline hydrates. In turn, SRA presented by compositions “TSP – glycerol” and “TSP – glycerol – polyacrylamide” provide enhancement of AASC fine concretes fracture toughness during late structure formation with increasing ratio of tensile strength in bending to compressive strength up to 37 – 49 % if compare with the reference AASC when water glass is used.


2011 ◽  
Vol 368-373 ◽  
pp. 3240-3245
Author(s):  
Zhi Jun Zhou ◽  
Hui Li ◽  
Qiang Song ◽  
Bao Jing Shen

In this paper, water glass was chosen as activator to prepare Alkali-activated slag(AAS) cement. Effects of modulus and dosage of water glass, and admixture (fly ash, slag and silica fume) on the strength of AAS cement was investigated. It was found that the modulus of water glass had great effect on the strength of AAS cement when the mixing amount of water glass was less than 12%. With the incorporation of fly ash or slag, the strength of AAS cement decreased, however the incorporation of silica fume could promote the flexural and compressive strength of AAS cement slightly.


2012 ◽  
Vol 226-228 ◽  
pp. 1747-1750
Author(s):  
Chang Hui Yang ◽  
Qun Pan ◽  
Jiong Zhu

In this work, the adsorption of naphthalene-based water reducer (FDN) on slag ground with or without the composite retarder YP-3 and PN (YP) in alkali-activated slag cement (AASC) activated by water glass (WG) has been studied in detail. The results show that the effect of the adsorption of water reducer on AASC depends directly on the dosage of the water reducer and on the composite retarder used. For example, mixed slag particles adsorb thrice as much water reducer FDN than pure slag particles at 1% mass of the slag, and the absolute value increment of the zeta potential of the AASC suspension containing the composite retarder is 8.61 mV, compared with 1.99 mV in the system without the composite retarder. Moreover, the AASC pastes activated by WG containing the retarder YP show better rheological properties and lower fluidity loss over time.


2011 ◽  
Vol 399-401 ◽  
pp. 1246-1250
Author(s):  
Xian Feng Liu ◽  
Jia Hui Peng ◽  
Chang Hui Yang ◽  
Yu Yan Shu ◽  
Da Chang Wu

Alkali activated slag cement and concrete are high strength, rapid hardening, low heat of hydration, good durability and so on. Whereas, too high viscosity and bad workability of the fresh mixture is the crux of the matter to embarrass application of alkali-activated slag cement and concrete. Development of special superplasticizer for alkali activated slag cement and concrete is a worth exploring way to solve the problem, and the study on the surface tension of simulated solutions of alkali activated slag cement system is one of the basic researches about the special superplasticizer. In this paper, the surface tension of surfactant-alkali-water was studied by Wilhelmy method. The results showed, first, water-glass had the best efficacity of several alkali activators, when the modulus of water-glass was 1.5 and dosage of water-glass by Na2O was 8%, the surface tension was reduced by 33 mN/m and reduced to 39.9mN/m; second, [CH3(CH2)9]2N(CH3)2Cl had the best efficacity of several surfactants, when the concentration of [CH3(CH2)9]2N(CH3)2Cl was 50g/L, the surface tension was reduced by 35.3 mN/m and reduced to 32.5 mN/m; finally, the effect of surfactant and alkali together on the surface tension of water was complex, surfactants had hardly effective in water glass.


2014 ◽  
Vol 672-674 ◽  
pp. 1823-1827
Author(s):  
Xiao Wei Sun ◽  
Wan Yang Niu ◽  
Ling Ling Wang

These are many factors that can influence the properties of alkali-activated slag cementitious material, such as the modulus and content of water glass, water-cement ratio, curing conditions, and so forth. The rules that how these factors affect setting time and strength of the material are systematically discussed in the paper. It is found that the setting time of the material depends on the concentration of alkaline ions in solution; The material will have the best strength when the modulus and content of water glass are 1.4 and 8%, respectively. The curing temperature increase will be helpful to compressive strength increase.


2005 ◽  
Vol 70 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Darko Krzan ◽  
Miroslav Komljenovic ◽  
Branislav Zivanovic

The influence of certain types of activators (water glass Na2O.nSiO2 and sodium-metasilicate Na2SiO3.5H2O) on the hydration process of alkali activated slag was investigated in this study. The influence of activator concentration, specific surface area of the slag and the modulus n of the water glass (mass ratio between SiO2 and Na2O) on the kinetics of the hydration process i.e., the change of compressive strength were also investigated. Poorly crystallized low base calcium silicate hydrate C-S-H (I) is the main hydration product of alkali activated slag regardless of the activator used. This is the reason for the rapid increase in the strength of alkali activated slag and also of the very high strength values. The strength growth rate and strength values were significantly higher when sodium-metasilicate was used as the activator than when water glass was used. The specific surface area of the slag and the activator concentration are parameters which have a closely connected influence on strength and their action is cumulative. The modulus n of water glass does not have an explicit influence on the strength of alkali activated slag.


2013 ◽  
Vol 423-426 ◽  
pp. 1018-1026
Author(s):  
Fu Qiang He ◽  
Xiao Peng An

Compressive strength and AC impedance of mortar made with water-glass-activated slag were investigated as a dependence of modulus (0.5-2.0) and dosage (2-6%) of the water-glass. Results shown that when the dosage of water glass is 2- 4 %, the modulus of the water glass has a little effect on the compressive strength. In the case of the dosage of water glass is beyond 4 %, when modulus of the water glass change from 0.5-1.0, the compressive strength obviously increases with increase of modulus of water glass and when modulus of the water glass change from 1.0-2.0, the modulus of the water glass has a little effect on the compressive strength. The strength increases with increase of the dosage from 2 to 6%. In the case same dosage and modulus, there is a rather good power correlation between the bulk resistance and the activated age. With increase of the dosage, the bulk resistance significantly decreases when the dosage is below 4%. The decreasing degree is small when the dosage is beyond 4%. The decreasing degree derived from the dosage increases with the activated age. The effect of the modulus on the bulk resistance depends on range of the dosage. However, it can be regarded that when the dosage is 4% and 6%, the modulus has small effect on the bulk resistance in the case of all the dosages.


2011 ◽  
Vol 492 ◽  
pp. 429-432 ◽  
Author(s):  
Yong Hao Fang ◽  
Zheng Long Lu ◽  
Zhong Li Wang

The hydration process of alkali-activated slag cement, especially at early-age, was studied by FT-IR, compared with that of Portland cement. The results show that during the hydration of alkali activated slag cement, two processes have taken place, the dissolution of Al3+ from the slag and then the recombination of Al3+ ions with the silicate anions. The former associated with the break of the glass network of slag and the later with the re-polymerization of the silicate and aluminosilicate anions. The rate of break of the glass network increases with the dosage of water glass, which completed in 24 h when the dosage of the water glass solution equivalent to Na2O exceeds 6% of the slag powder. It is confirmed by the IR study that Ca(OH)2 is absent in the hardened alkali activated slag cement paste.


Sign in / Sign up

Export Citation Format

Share Document