Microwave absorption and anti-aging properties of modified bitumen contained SiC attached layered double hydroxides

2019 ◽  
Vol 227 ◽  
pp. 116714 ◽  
Author(s):  
Chao Li ◽  
Shaopeng Wu ◽  
Benan Shu ◽  
Yuanyuan Li ◽  
Zongwu Chen
2015 ◽  
Vol 49 (4) ◽  
pp. 1235-1244 ◽  
Author(s):  
Song Xu ◽  
Jianying Yu ◽  
Canlin Zhang ◽  
Tingting Yao ◽  
Yubin Sun

2016 ◽  
Vol 847 ◽  
pp. 418-424
Author(s):  
Wei Wang ◽  
Jian Ying Yu ◽  
Yi Yi ◽  
Xiao Chen

Effect of three de-icing additives: NaCl, wrapped NaCl (W-NaCl) and Layered double hydroxides (LDHs) on thermo-oxidative and ultraviolet aging properties of bitumen were investigated by thin film oven test (TFOT), pressure aging vessel (PAV) and ultraviolet (UV) radiation test. The experimental result illustrated that compared with bitumen with MF, the softening point and viscosity of bitumen with NaCl and W-NaCl increased and the ductility decreased distinctly after TFOT, PAV and UV aging, indicating that NaCl and W-NaCl accelerated the aging of bitumen. However, for bitumen with LDHs, the softening point and viscosity decreased significantly, the ductility increased after aging, which demonstrated that the anti-aging properties of bitumen were improved effectively by LDHs.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4201
Author(s):  
Canlin Zhang ◽  
Hongjun Dong ◽  
Zhengli Yan ◽  
Meng Yu ◽  
Ting Wang ◽  
...  

SBS-modified bitumen (SMB) is susceptible to aging, which seriously influences its service performance and life. In order to strengthen the anti-aging ability of SMB, triethoxyvinylsilane was designed to organically modify layered double hydroxides (LDHs) and was applied to modify SMB. The dispersibility and storage stability of LDHs in SMB were markedly enhanced after triethoxyvinylsilane organic modification, and the compatibility and storage stability of SBS in bitumen were simultaneously enhanced. Compared with SMB, the introduction of LDHs and organic LDHs (OLDHs) could ameliorate the high-temperature properties of SMB, and the thermostability of SBS in bitumen at a high temperature was also distinctly improved, especially OLDHs. After aging, due to the oxidation of molecular bitumen and the degradation of molecular SBS, SMB became hardened and brittle, and the rheological properties were significantly deteriorated, which had serious impacts on the performance of SMB. LDHs can mitigate the detriment of aging to bitumen and SBS, and the deterioration of the rheological properties of SMB is obviously alleviated. As a result of the better dispersibility and storage stability, OLDHs exerted superior reinforcement of the anti-aging ability of SMB.


2012 ◽  
Vol 40 (5) ◽  
pp. 20120050 ◽  
Author(s):  
Yongfang Huang ◽  
Zhengang Feng ◽  
Henglong Zhang ◽  
Jianying Yu

2014 ◽  
Vol 599 ◽  
pp. 203-207
Author(s):  
Song Xu ◽  
Wei Dan ◽  
Wen Zu Li ◽  
Jian Ying Yu

Layered double hydroxides (LDHs)/SBS modified bitumens used for waterproofing membrane were prepared by melt blending using various contents of SBS and LDHs. Effects of the LDHs on physical properties and thermal oxidative aging performance of modified bitumen were investigated. The results show that softening point and low temperature flexibility of LDHs/SBS modified bitumen are increased simultaneously with the rise of SBS content, while they are little affected by the change of LDHs content. The thermal oxidative aging resistance of SBS modified bitumen is gradually improved with increasing LDHs content. In addition, the aging rate of SBS modified bitumen with LDHs are evidently lower than that without LDHs over time, which indicates that LDHs improve the ability of SBS modified bitumen to resist the thermal oxidative aging effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xing Liu ◽  
Shaopeng Wu ◽  
Ling Pang ◽  
Yue Xiao ◽  
Pan Pan

This study investigated the influence of layered double hydroxides (LDHs) on the fatigue properties of asphalt mixture. In this paper, different aging levels (thin film oven test (TFOT) and ultraviolet radiation aging (UV aging for short)) of bitumen modified with various mass ratios of the LDHs were investigated. The TFOT and UV aging process were used to simulate short-term field thermal-oxidative aging and long-term field light UV aging of bitumen, respectively. The influences of LDHs on the fatigue properties of LDHs were evaluated by dynamic shear rheometer (DSR) and indirect tensile fatigue test. Results indicated that the introduction of LDHs could change the fatigue properties of bitumen under a stress control mode. The mixture with modified bitumen showed better fatigue resistance than the mixture with base bitumen. The results illustrated that the LDHs would be alternative modifiers used in the bitumen to improve the lifetime of asphalt pavements.


Sign in / Sign up

Export Citation Format

Share Document