Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites

2020 ◽  
Vol 246 ◽  
pp. 118412 ◽  
Author(s):  
S.J. Amith Kumar ◽  
S.J. Ajith Kumar
2021 ◽  
Author(s):  
Karmanya Ratra

Carbon fiber bicycle wheels were tested under low velocity impact to monitor the damage evolution of the impact event. A wheel model designed by KQS Inc. (industrial partner) with eight different configurations, including spoke tension, number of spokes, and location of impact on the rim were investigated. IR thermography combined with PCA was used to monitor the damage during impact. Results showed that wheels in line with spokes had 16% higher impact energy absorption compared to those impacted in between spokes on average (58.9 J vs 70.2 J). The 20 spoked wheels had a slightly higher (6%) impact energy absorption than the 24 spoked wheels. The added stiffness due to the extra spokes reduced the impact energy absorption of rim. Wheels with higher spoke tension also had slightly improved impact energy absorption (4%). The test protocol established in this study provides a good understanding of the wheel’s impact damage evolution.


2020 ◽  
Vol 27 (1) ◽  
pp. 245-257
Author(s):  
Jiale Jia ◽  
Shi Yan

AbstractIn this study, the foam sandwich panels were manufactured by integrating top facesheet and bottom facesheet with pyramidal lattice stitched core to overcome the weak interface between the core and skins of the sandwich structures. Low-velocity impact test and numerical simulation were conducted to reveal the failure mechanisms and energy absorption capacity at sandwich composite with foam core, different strut stitched foam core under different impact energy. The experimental results show showed that the strut core can improve the impact resistance of the specimen, and which is closely related to the diameter of the strut core. Compared with foam sandwich structure, pyramidal lattice stitched foam sandwich composites have comparable specific energy absorptions. The failure modes were also analyzed which is: fiber breakage, delamination, foam deformation and strut core breakage. The research presented here confirms that numerical simulation show good agreement with the experiment.


2021 ◽  
Author(s):  
Karmanya Ratra

Carbon fiber bicycle wheels were tested under low velocity impact to monitor the damage evolution of the impact event. A wheel model designed by KQS Inc. (industrial partner) with eight different configurations, including spoke tension, number of spokes, and location of impact on the rim were investigated. IR thermography combined with PCA was used to monitor the damage during impact. Results showed that wheels in line with spokes had 16% higher impact energy absorption compared to those impacted in between spokes on average (58.9 J vs 70.2 J). The 20 spoked wheels had a slightly higher (6%) impact energy absorption than the 24 spoked wheels. The added stiffness due to the extra spokes reduced the impact energy absorption of rim. Wheels with higher spoke tension also had slightly improved impact energy absorption (4%). The test protocol established in this study provides a good understanding of the wheel’s impact damage evolution.


Sign in / Sign up

Export Citation Format

Share Document