scholarly journals Comparison with Low-Velocity Impact and Quasi-staticIndentation Testing of Foam Core Sandwich Composites

Author(s):  
Yan Li ◽  
Xuefeng An ◽  
Xiaosu Yi
2020 ◽  
Vol 27 (1) ◽  
pp. 245-257
Author(s):  
Jiale Jia ◽  
Shi Yan

AbstractIn this study, the foam sandwich panels were manufactured by integrating top facesheet and bottom facesheet with pyramidal lattice stitched core to overcome the weak interface between the core and skins of the sandwich structures. Low-velocity impact test and numerical simulation were conducted to reveal the failure mechanisms and energy absorption capacity at sandwich composite with foam core, different strut stitched foam core under different impact energy. The experimental results show showed that the strut core can improve the impact resistance of the specimen, and which is closely related to the diameter of the strut core. Compared with foam sandwich structure, pyramidal lattice stitched foam sandwich composites have comparable specific energy absorptions. The failure modes were also analyzed which is: fiber breakage, delamination, foam deformation and strut core breakage. The research presented here confirms that numerical simulation show good agreement with the experiment.


1999 ◽  
Author(s):  
Uday K. Vaidya ◽  
Mohan V. Kamath ◽  
Mahesh V. Hosur ◽  
Anwarul Haque ◽  
Shaik Jeelani

Abstract In the current work, sandwich composite structures with innovative constructions referred to as Z-pins, or truss core pins are investigated, in conjunction with traditional honeycomb and foam core sandwich constructions, such that they exhibit enhanced transverse stiffness, high damage resistance and furthermore, damage tolerance to impact. While the investigations pertaining to low velocity impact have appeared recently in Vaidya et al. 1999, the current paper deals with compression-after-impact studies conducted to evaluate the residual properties of sandwich composites “with” and “without” reinforced foam cores. The resulting sandwich composites have been investigated for their low velocity (< 5 m/sec) impact loading response using instrumented impact testing at energy levels ranging from 5 J to 50 J impact energy. The transverse stiffness of the cores and their composites has also been evaluated through static compression studies. Compression-after-impact studies were then performed on the sandwich composites with traditional and pin-reinforcement cores. Supporting vibration studies have been conducted to assess the changes in stiffness of the samples as a result of the impact damage. The focus of this paper is on the compression-after-impact (CAI) response and vibration studies with accompanying discussion pertaining to the low velocity impact.


Sign in / Sign up

Export Citation Format

Share Document