Mechanical properties and microstructure of layered cemented paste backfill under triaxial cyclic loading and unloading

2020 ◽  
Vol 257 ◽  
pp. 119540 ◽  
Author(s):  
Jie Wang ◽  
Jianxin Fu ◽  
Weidong Song
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xinzhan Qin ◽  
Yu Zhou ◽  
Manchao He

Due to the adjustment of energy structure, a large number of coal mines are abandoned. Considering the environmental and economic effects, many experts proposed to use the abandoned mine cavern as the reservoir of the pumped storage power station. Furthermore, considering the long-term effects of repeated pumping and drainage and hydrodynamic pressure on the surrounding rock in coal mines, a large amount of sandstone was collected from the Ruineng coal mine in Yan’an city to carry out a series of laboratory tests. Through uniaxial compression testing of rock samples with different water content rates, combined with acoustic emission (AE) analysis, the strength softening and macrodeformation characteristics are obtained, and the influence of water content on acoustic emission characteristics is clarified. The mechanical properties of water bearing rock under cyclic loading and unloading experiments with varying upper limits are obtained using a triaxial test system, and the precursory information of rock failure is captured, providing significant guidance for stability analysis and instability warning for surrounding rock in pumped storage power stations.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dong Zhang ◽  
Ai-hong Lu ◽  
Xia Wang ◽  
Yu Xia ◽  
Si-yu Gong ◽  
...  

Understanding the mechanical properties and energy response of high-porosity concrete under the cyclic loading and unloading is the foundation of road construction in sponge city. In this study, the concrete with the porosity of 15% was taken as the research object, and the cyclic loading and unloading tests on the high-porosity concrete were performed under the stress amplitude of 25 MPa, 30 MPa, and 35 MPa in the elastic stage. The effects of stress amplitude and cycle number on the mechanical characteristics and damage evolution law of concrete were obtained. The experimental results show the following. (1) With the increase of cycle number, the loading and unloading elastic modulus of concrete under different stress amplitudes first increases and then decreases; the greater the stress amplitude, the faster the growth and deceleration of the loading and unloading elastic modulus. (2) With the increase of the cycle number, the peak strain and residual plastic deformation increase. (3) The greater the stress amplitude, the higher the damage of concrete; with the increasing number of cyclic loading and unloading, the damage of concrete is enhanced gradually. When the damage variable value is 1, the relationship between the cycle number and the initial stress amplitude satisfies a negative exponential function.


Sign in / Sign up

Export Citation Format

Share Document