Sustainable natural pozzolana concrete – A comparative study on its environmental performance against concretes with other industrial by-products

Author(s):  
Md. Uzzal Hossain ◽  
Rongjin Cai ◽  
S. Thomas Ng ◽  
Dongxing Xuan ◽  
Hailong Ye
2014 ◽  
Vol 57 (5) ◽  
pp. 192-198 ◽  
Author(s):  
H. P. Tiwari ◽  
P. K. Banerjee ◽  
R. Sharma ◽  
S. K. Haldar ◽  
P. C. Joshi

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8409
Author(s):  
Esmaeil Jadidi ◽  
Mohammad Hasan Khoshgoftar Manesh ◽  
Mostafa Delpisheh ◽  
Viviani Caroline Onishi

Integrated solar-assisted gasification cycles (ISGC) have emerged as a more flexible and environmentally friendly solution for producing power, steam, and other high-valued by-products from low-cost opportunity fuels. In this light, this paper investigates a new ISGC system for converting heavy refineries fuels into power and steam utilities while enhancing energy efficiency and economic and environmental performance indicators. In this approach, a solar energy field and a two-pressure heat recovery steam generator were integrated into the ISGC system to improve overall economic and environmental plant viability. The ISGC system was modelled in MATLAB software, and the results were validated using Thermoflex software. Conventional and advanced energy, exergy, exergoeconomic, and exergoenvironmental (4E) analyses were implemented to assess the main performance parameters and identify potential system improvements. The ISGC system produced 319.92 MW of power by feeding on 15.5 kg/s of heavy refinery fuel, with a thermal efficiency of 50% and exergy efficiency of 54%. The results also revealed an investment cost of $466 million, evaluated at a system cost rate of 446 $/min and an environmental impact rate of 72,796 pts/min. The conventional and advanced 4E analyses unveiled the process economic and environmental feasibilities, particularly for oil-rich countries with high availability of solar resources.


Author(s):  
Victor K. Lyubov ◽  
◽  
Aleksandr M. Vladimirov ◽  

In advanced countries, the dramatic impact of greenhouse gases on the global climate is reduced by replacing fossil fuels with biofuels. This method is being actively encouraged. However, by-products of logging, processing and conversion of wood are classified as difficult to burn fuels due to their high moisture content, low energy density and extremely heterogeneous granulometric composition. A promising direction to increase the energy density and transportability of the timber industry by-products is their granulation. Wood pellet fuel burning in heat-generating plants results in significant increase in their energy and environmental performance. The purpose of the paper is an experimental and calculation study of the energy and environmental performance of 4 MW hot water boilers produced by Polytechnik Luft- und Feuerungstechnik GmbH in the process of burning pine and spruce wood pellets obtained from by-products woodworking. When performing studies, the components of the boiler’s heat balance, gas release, and particulate emissions were determined. Numerical modeling of thermochemical and aerodynamic processes taking place in the boiler combustion chamber was carried out by using the Ansys Fluent three-dimensional simulation software. Together with industrial-operational tests it showed the possibility to reduce the total share of flue gas recirculation into combustion chambers of boiler units to values not exceeding 0.45, in providing an acceptable temperature of combustion products at the combustion chamber outlet and maintaining minimum emissions of carbon and nitrogen monoxides. At the same time, the share of gases fed by recirculation smoke exhausters to the over-bed area of the burner should have higher values than under the reciprocating grates of boilers. Guidelines for comprehensive improvement of wood pellet combustion efficiency in combustion chamber of 4 MW hot water boilers have been developed and implemented. The priorities are: using the air passed through the cooling channels of the setting as secondary air; reducing the rarefaction in the combustion chambers to 30–70 Pa; optimizing the ratio of primary and secondary air, herewith, the share of primary air in the total flow should be 0.26–0.35. Implementation of the developed guidelines allowed to increase the boiler gross efficiency by 0.5–1.8 %, to reduce the aerodynamic resistance of the gas path by 15–20 % and to ensure consistently low emissions of carbon and nitrogen monoxides and soot particles. When designing boiler units for burning wood pellet fuel it is advisable to place heating surfaces in the combustion chamber, included in the circulation circuit of the boiler. This will increase the efficiency and life cycle of the boiler unit.


Author(s):  
Andréia Marize Rodrigues ◽  
Marcelo Girotto Rebelat ◽  
Amanda Cerqueira ◽  
Juan Arturo Castañeda-Ayarza

Sign in / Sign up

Export Citation Format

Share Document