scholarly journals Models for compressive strength estimation through non-destructive testing of highly self-compacting concrete containing recycled concrete aggregate and slag-based binder

2021 ◽  
Vol 280 ◽  
pp. 122454
Author(s):  
Víctor Revilla-Cuesta ◽  
Marta Skaf ◽  
Roberto Serrano-López ◽  
Vanesa Ortega-López
Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2190
Author(s):  
Víctor Revilla-Cuesta ◽  
Marta Skaf ◽  
Ana B. Espinosa ◽  
Amaia Santamaría ◽  
Vanesa Ortega-López

The compressive strength of recycled concrete is acknowledged to be largely conditioned by the incorporation ratio of Recycled Concrete Aggregate (RCA), although that ratio needs to be carefully assessed to optimize the design of structural applications. In this study, Self-Compacting Concrete (SCC) mixes containing 100% coarse RCA and variable amounts, between 0% and 100%, of fine RCA were manufactured and their compressive strengths were tested in the laboratory for a statistical analysis of their strength variations, which exhibited robustness and normality according to the common statistical procedures. The results of the confidence intervals, the one-factor ANalysis Of VAriance (ANOVA), and the Kruskal–Wallis test showed that an increase in fine RCA content did not necessarily result in a significant decrease in strength, although the addition of fine RCA delayed the development of the final strength. The statistical models presented in this research can be used to define the optimum incorporation ratio that would produce the highest compressive strength. Furthermore, the multiple regression models offered accurate estimations of compressive strength, considering the interaction between the incorporation ratio of fine RCA and the curing age of concrete that the two-factor ANOVA revealed. Lastly, the probability distribution predictions, obtained through a log-likelihood analysis, fitted the results better than the predictions based on current standards, which clearly underestimated the compressive strength of SCC manufactured with fine RCA and require adjustment to take full advantage of these recycled materials. This analysis could be carried out on any type of waste and concrete, which would allow one to evaluate the same aspects as in this research and ensure that the use of recycled concrete maximizes both sustainability and strength.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 1
Author(s):  
T. V. Arul Prakash ◽  
Dr. M. Natarajan ◽  
Dr. T. Senthil Vadivel ◽  
K. Vivek

This article presents the influence of the Recycled Concrete Aggregate (RCA) on the mechanical properties of self-compacting fly ash concrete (M30 Grade). The RCA from local construction demolition site were employed as a replacement for natural coarse aggregate (0% - 30%) in self-compacting concrete (SCC). The Viscosity modifying material used in this study was Class F fly ash. The results indicate that recycled concrete aggregate can be replaced by an optimal 25% replacement percentage in the manufacture of SCC without significantly affecting strength and durability.  


2018 ◽  
Vol 207 ◽  
pp. 01001
Author(s):  
Tu Quynh Loan Ngo ◽  
Yu-Ren Wang

In the construction industry, to evaluate the compressive strength of concrete, destructive and non-destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those methods do not destroy concrete samples. However, they usually give larger percentage of error than using destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the compressive strength of concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
W. C. Tang ◽  
P. C. Ryan ◽  
H. Z. Cui ◽  
W. Liao

The utilisation of recycled concrete aggregate (RCA) in Self-Compacting Concrete (SCC) has the potential to reduce both the environmental impact and financial cost associated with this increasingly popular concrete type. However, to date limited research exists exploring the use of coarse RCA in SCC. The work presented in this paper seeks to build on the existing knowledge in this area by examining the workability, strength, and fracture properties of SCCs containing 0%, 25%, 50%, 75%, and 100% coarse RCA. The experimental programme indicated that at RCA utilisation levels of 25% to 50% little or no negative impact was observed for strength, workability, or fracture properties, with the exception of a slight reduction in Young’s modulus.


2020 ◽  
Vol 220 ◽  
pp. 01098
Author(s):  
Mohammad Tabrez Ali ◽  
Ibadur Rahman ◽  
Nirendra Dev ◽  
Priyanka Singh

When sustainability has become a primary measure of the selection of the building materials in the construction industry over the past decades, researchers all around the world have been looking upon for alternatives to reduce the overall environmental impact of the construction materials while not compromising the strength and durability. The factors like manufacturing, reusability, recyclability, disposal etc, are the criteria of utmost attention affecting the overall life cycle impact of the construction materials. In this prospect the Recycled Concrete Aggregate (RCA) has shown up as an exceptionally viable contender for the manufacturing of concrete with several environmental benefits over the Natural Aggregate (NA) and has already been identified by industry and several government agencies across the globe. The efficient material use of RCA can potentially deliver an inferior though competent concrete in comparison to the NA while averring the criteria of sustenance. The present study delves into the calculation of the proportion of the RCA in a mix design for achieving maximum compressive strength. The experimental setup constituted the casting of concrete cubes of control mix design of M40 grade with proportions of RCA varying from 0-100 percent spread over a space of 10% with NA which were later put to tests. The thorough investigation on the casted concrete cubes lead to the conclusion that the mix design with 50% proportion of RCA in addition to 50% proportion of NA delivered the maximum compressive strength, an average value of 8.23% higher than that of the normal concrete and the highest Rebound Number, an average value of 53.92 for the M40 grade concrete thereby showcasing the feasibility of producing structural concrete with RCA. The results are asserted to be governed by the better bonding between the RCA and NA and due to the significant increase in the water retention capacity by the provision of RCA in the mix.


Sign in / Sign up

Export Citation Format

Share Document