Linear energy storage and dissipation laws of concrete under uniaxial compression at different ages

2022 ◽  
Vol 318 ◽  
pp. 125963
Author(s):  
Fengqiang Gong ◽  
Ruihe Shi ◽  
Lei Xu
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Fengqiang Gong ◽  
Jingyi Yan ◽  
Yunliang Wang ◽  
Song Luo

To investigate the energy evolution and storage performances of rock under uniaxial cyclic compression, a series of uniaxial cyclic loading and unloading compression tests were conducted on Green sandstone and Yueyang granite. Two methods for calculating the total input energy of the specimen under each cycle were proposed. One is based on the actual stress-strain curve of the specimen (ASC method); the other is based on the stress-strain envelope curve during the loading process (SEC method). The experimental results show that, for those two methods, the total input energy, elastic energy, and dissipated energy of the specimen show a quadratic function increasing trend with the increase of stress levels. Besides, the elastic energy increases linearly with the increase of total input energy for both methods, which confirms that the linear energy storage law is also applicable to rock materials under uniaxial cyclic loading and unloading compression conditions. Moreover, the uniaxial compression energy storage coefficient calculated by the SEC method is highly close to that obtained based on the single cycle loading and unloading test, which indicates that the uniaxial compression energy storage coefficient of rock can also be calculated by multiple cyclic loading and unloading test. In conclusion, the linear energy storage law is a basic physical property of rock materials, and the uniaxial compression energy storage coefficient is a physical index reflecting the energy storage capacity of rock materials.


2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


2013 ◽  
Author(s):  
Christopher D. Kimbrough ◽  
Brian H. Bornstein ◽  
Heather Bryden

Sign in / Sign up

Export Citation Format

Share Document