Effects of pre-existing single crack angle on mechanical behaviors and energy storage characteristics of red sandstone under uniaxial compression

2021 ◽  
Vol 113 ◽  
pp. 102933
Author(s):  
Lei Xu ◽  
Fengqiang Gong ◽  
Song Luo
Author(s):  
Xiaokang Pan ◽  
Filippo Berto ◽  
Xiaoping Zhou

This work investigates the influence of temperature on the creep damage behaviors of red sandstone. The samples treated at 25 ℃, 200 ℃, 400 ℃ and 600 ℃ are selected to carry out the uniaxial compression and creep experiments. It is found that temperature has obvious influence on uniaxial compressive strength, Young’s modulus and failure modes of red sandstone. It can be also believed that the temperature can degrade the mechanical behaviors of red sandstone. However, as the temperature increases, the damage value does not always increase, the damage variable has a negative value at 25 ~ 400 ℃. It can be found that the higher the temperature, the larger the effect of loading ratio on the ratio of creep strain to instantaneous strain, that is, temperature reduces the ability of red sandstone to resist creep deformation. Acoustic emission (AE) technology has been also used in the loading process of uniaxial compression and creep tests. It is found that the probability density of AE absolute energy of different samples still satisfies the Gutenberg-Richter law well. In uniaxial compression test, as the temperature increases, the absolute value of the critical index increases exponentially. In the uniaxial creep test, as the loading ratio increases, the absolute value of the critical index first decreases and then increases. When the loading ratio is the same, as the temperature increases, the absolute value of the critical index also increases exponentially.


Energy ◽  
2014 ◽  
Vol 78 ◽  
pp. 212-217 ◽  
Author(s):  
X.J. Wang ◽  
X.F. Li ◽  
Y.H. Xu ◽  
D.S. Zhu

Author(s):  
Xiaokang Pan ◽  
Filippo Berto ◽  
Xiaoping Zhou

This work discusses the results from tests conducted to investigate the uniaxial compression and creep behavior of red sandstone. The original untreated sample and the 800 ℃ treated sample have been selected to carry out the experiments. It has been found that high temperature has obvious influence on the mechanical properties of red sandstone. The relationship between creep strain and instantaneous strain, as well as instantaneous deformation modulus and creep viscosity coefficient have been analyzed. It has been found that high temperature reduces the ability of red sandstone to resist instantaneous deformation and creep deformation. Acoustic emission (AE) technology has been also used in the loading process of uniaxial compression and creep tests, providing a powerful means for damage evolution analysis of red sandstone.


2019 ◽  
Vol 238 ◽  
pp. 303-310 ◽  
Author(s):  
Bowen Yang ◽  
Jiankai Dong ◽  
Long Zhang ◽  
Mengjie Song ◽  
Yiqiang Jiang ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 742-752
Author(s):  
Cai Yang ◽  
Shengdong Liu ◽  
Haiping Yang

Abstract Deformation and rupture of rock mass under loading cause the variation of electric potential. Response characteristics of self-potential and stress during the complete stress-strain process of red sandstones play an important role in evaluating the stress state of sandstone on the basis of self-potential. Experimental results demonstrate that the stress of red sandstone under uniaxial compression is linearly correlated with the self-potential difference before the first inflection point in the initial stage of loading. The average variation rate of self-potential difference and stress is 0.1325 mV MPa−1. As the loading pressure gradually increases and enters the softening stage (before the maximum loading point), the catastrophic points of uniaxial loading stress correspond to the inflection point of self-potential. The self-potential of red sandstone varies in a range of 0–45.6 mV in that case and it fluctuates most significantly around the maximum loading point, with a range of 0.3–195.5 mV. In the end stage of loading, the macroscopic rupture of the red sandstone sample is complete, the self-potential of red sandstone fluctuates slightly around the maximum load point and then gradually stabilizes. Moreover, it is found that self-potentials change more significantly in the radial direction than in the axial direction in the uniaxial compression experiment, indicating that self-potentials generated by rock mass rupture are more sensitive in the radial direction. The rupture process of red sandstone can be dynamically represented by the tempo-spatial evolution profiles of self-potential.


2019 ◽  
Vol 966 ◽  
pp. 428-432
Author(s):  
Fitrilawati ◽  
Vika Marcelina ◽  
Diyan Unmu Dzujah ◽  
Ayi Bahtiar ◽  
Yeni Wahyuni Hartati ◽  
...  

Graphene Oxide (GO) is two dimensional material that has been widely studied as an electrode material for supercapasitor. We prepared thin films of GO on metal oxide substrate of indium tin oxide (ITO) and metal substrate of Copper (Cu) using electrochemical deposition technique from 0.5 mg/ml GO dispersed in water. ITO-GO film was prepared using voltage range of -1.6 V to 0 V (ITO) and Cu-GO film was prepared using voltage range of 0 V to 1 V at scan rate of 50 mV/s. Both samples were characterized using Cyclic Voltammetry (CV) measurements in 1 M KCl electrolyte at varied scan speed with platinum (Pt) as counter electrode and Ag/AgCl as reference electrode. We compare energy storage characteristics of ITO-GO and Cu-GO using cyclic voltammogram data. It is found that GO deposited in metal substrate of Cu has higer energy density compare to that deposited in metal oxide substrate of ITO.


2017 ◽  
Vol 105 ◽  
pp. 4179-4184 ◽  
Author(s):  
Ming Qiu ◽  
Shuangquan Rao ◽  
Jiahui Zhu ◽  
Shanshan Fu ◽  
Zhenming Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document