Ultrahigh Energy Storage Performances of Polymer-based Nanocomposite via Interfaces Engneering

Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Zhaohua Jiang ◽  
Yongjun Xu

The low dielectric constant of the nonpolar polymer poly(1-butene) (PB-1) limits its application as a diaphragm element in energy storage capacitors. In this work, Ba(Zr0.2Ti0.8)O3-coated multiwalled carbon nanotubes (BZT@MWCNTs) were first prepared by using the sol–gel hydrothermal method and then modified with polydopamine (PDA) via noncovalent polymerization. Finally, PB-1 matrix composite films filled with PDA-modified BZT@MWCNTs nanoparticles were fabricated through a solution-casting method. Results indicated that the PDA-modified BZT@MWCNTs had good dispersion and binding force in the PB-1 matrix. These characteristics improved the dielectric and energy storage performances of the films. Specifically, the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film exhibited the best dielectric performance. At 1 kHz, the dielectric constant of this film was 25.43, which was 12.7 times that of pure PB-1 films. Moreover, its dielectric loss was 0.0077. Furthermore, under the weak electric field of 210 MV·m−1, the highest energy density of the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film was 4.57 J·cm−3, which was over 3.5 times that of PB-1 film (≈1.3 J·cm−3 at 388 MV·m−1).


2017 ◽  
Vol 5 (5) ◽  
pp. 2328-2338 ◽  
Author(s):  
Dewei Rao ◽  
Lingyan Zhang ◽  
Zhaoshun Meng ◽  
Xirui Zhang ◽  
Yunhui Wang ◽  
...  

Since the turn of the new century, the increasing demand for high-performance energy storage systems has generated considerable interest in rechargeable ion batteries.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 7065-7072
Author(s):  
Jianxin Zhang ◽  
Jiachen Ma ◽  
Luqing Zhang ◽  
Chuanyong Zong ◽  
Anhou Xu ◽  
...  

Preparation of high-performance dielectric composite films using PDFMA@BT hybrid nanoparticles as fillers.


2018 ◽  
Vol 08 (06) ◽  
pp. 1850040 ◽  
Author(s):  
Xuefan Zhou ◽  
Lu Wang ◽  
Guoliang Xue ◽  
Kechao Zhou ◽  
Hang Luo ◽  
...  

The high-performance energy-storage dielectric capacitors are increasingly important due to their wide applications in high power electronics. Here, we fabricated a novel P(VDF-HFP)-based capacitor with surface-modified NBT-[Formula: see text]ST ([Formula: see text], 0.10, 0.26) whiskers, denoted as Dop@NBT-[Formula: see text]ST/P(VDF-HFP). The influences of ST content, fillers’ volume fraction and electric field on the dielectric properties and energy-storage performance of the composites were investigated systematically. The results show that the dielectric constant monotonously increased with the increase of ST content and fillers’ volume fraction. The composite containing 10.0 vol% NBT-0.26ST whiskers possessed a dielectric constant of 39 at 1[Formula: see text]kHz, which was 5.6 times higher than that of pure P(VDF-HFP). It was noticed that the D-E loops of the composites became thinner and thinner with the increase of ST content. Due to the reduced remnant polarization, the composite with 5.0 vol% NBT-0.26ST whiskers achieved a high energy density of 6.18[Formula: see text]J/cm3 and energy efficiency of approximately 57% at a relatively low electric field of 200[Formula: see text]kV/mm. This work indicated that NBT-0.26ST whisker is a kind of potential ceramic filler in fabricating the dielectric capacitor with high discharged energy density and energy efficiency.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 755
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Yongjun Xu ◽  
Zhaohua Jiang

In this work, poly(1-butene) (PB-1) composite films with multi-walled carbon nanotubes (MWCNT) were prepared by a solution casting method. The relationship between the dielectric properties and the crystal transformation process of the films was investigated. It was indicated that there were two crystal forms of I and II of PB-1 during the solution crystallization process. With the prolongation of the phase transition time, form II was converted into form I. The addition of the conductive filler (MWCNT) accelerated the rate of phase transformation and changed the nucleation mode of PB-1. The presence of crystal form I in the system increased the breakdown strength and the dielectric constant of the films and reduced the dielectric loss, with better stability. In addition, the dielectric constant and the dielectric loss of the MWCNT/PB-1 composite films increased with the addition of MWCNT, due to the interfacial polarization between MWCNT and PB-1 matrix. When the mass fraction of the MWCNT was 1.0%, the composite film had a dielectric constant of 43.9 at 25 °C and 103 Hz, which was 20 times that of the original film.


2012 ◽  
Vol 727-728 ◽  
pp. 505-510
Author(s):  
L.P. Silva Neto ◽  
J.O. Rossi ◽  
A.R. Silva

The barium and strontium titanate (BST) ceramics have been used with great success as excellent dielectrics in the construction of high voltage (HV) commercial ceramic capacitors with reduced dimensions because of their high dielectric constant. However, the main point of this paper is to investigate other type of ceramic known as PZT (Lead Zirconate Titanate) normally used as piezoelectric sensors in industrial applications. The idea herein is to use the PZT ceramics as HV dielectrics for applications in high-energy storage systems by de-poling their piezoelectric properties in order to avoid dielectric damage and losses at high frequencies. For this, de-poled PZT-4 ceramic samples (30 mm × 2 mm) were submitted to HV tests, in which their dielectric breakdown strength and dielectric constant variation with the applied voltage were assessed. These results obtained confirmed the use of PZT in applications that require reasonable dielectric constant stability (< 15 %) with voltage and HV dielectric breakdown (40 kV/cm) for compact high-energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document