Active torsional vibration control of reciprocating engines

2008 ◽  
Vol 16 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Fredrik Östman ◽  
Hannu T. Toivonen
Author(s):  
D C Hesterman ◽  
B J Stone

It has been known for some time that the torsional vibration of reciprocating engines and pumps cannot be modelled accurately by representing the reciprocating mechanism by a constant inertia. There have been many publications describing better models than those that use constant inertia and these indicate that the effective inertia of a reciprocating mechanism varies with angular position. The major component of this variation is a twice per revolution cyclic effect—hence the term ‘secondary inertia’. The consequences of this secondary inertia effect can be serious for torsional vibration causing ‘secondary resonance,’ and even instability. This paper contains a review of the current literature on the subject and introduces some recent work by the authors.


2018 ◽  
Vol 9 (1) ◽  
pp. 34 ◽  
Author(s):  
Biqing Zhong ◽  
Bin Deng ◽  
Han Zhao

Hybrid electric vehicles (HEV) might cause new noise vibration and harshness (NVH) problems, due to their complex powertrain systems. Therefore, in this paper, a new longitudinal dynamic simulation model of a series-parallel hybrid electric bus with an active torsional vibration control module is proposed. First, the schematic diagrams of the simulation model architecture and the active control strategy are given, and the dynamic models of the main components are introduced. Second, taking advantage of the characteristics of hybrid systems, a method of determining the key dynamic parameters by a bench test is proposed. Finally, in a typical bus-driving cycle for Chinese urban conditions, time domain and frequency domain processing methods are used to analyze vehicle body jerk, fluctuation of rotational speed, and torsional angle of the key components. The results show that the active control method can greatly improve the system’s torsional vibration performance when switching modes and at resonance.


Sign in / Sign up

Export Citation Format

Share Document