Design and evaluation of a model predictive vehicle control algorithm for automated driving using a vehicle traffic simulator

2016 ◽  
Vol 51 ◽  
pp. 92-107 ◽  
Author(s):  
Jongsang Suh ◽  
Kyongsu Yi ◽  
Jiyeol Jung ◽  
Kyungjun Lee ◽  
Hyokjin Chong ◽  
...  
Author(s):  
Fabienne Roche ◽  
Anna Somieski ◽  
Stefan Brandenburg

Objective: We investigated drivers’ behavior and subjective experience when repeatedly taking over their vehicles’ control depending on the design of the takeover request (TOR) and the modality of the nondriving-related task (NDRT). Background: Previous research has shown that taking over vehicle control after highly automated driving provides several problems for drivers. There is evidence that the TOR design and the NDRT modality may influence takeover behavior and that driver behavior changes with more experience. Method: Forty participants were requested to resume control of their simulated vehicle six times. The TOR design (auditory or visual-auditory) and the NDRT modality (auditory or visual) were varied. Drivers’ takeover behavior, gaze patterns, and subjective workload were recorded and analyzed. Results: Results suggest that drivers change their behavior to the repeated experience of takeover situations. An auditory TOR leads to safer takeover behavior than a visual-auditory TOR. And with an auditory TOR, the takeover behavior improves with experience. Engaging in the visually demanding NDRT leads to fewer gazes on the road than the auditory NDRT. Participants’ fixation duration on the road decreased over the three takeovers with the visually demanding NDRT. Conclusions: The results imply that (a) drivers change their behavior to repeated takeovers, (b) auditory TOR designs might be preferable over visual-auditory TOR designs, and (c) auditory demanding NDRTs allow drivers to focus more on the driving scene. Application: The results of the present study can be used to design TORs and determine allowed NDRTs in highly automated driving.


Author(s):  
Naohisa Hashimoto ◽  
Simon Thompson ◽  
Shin Kato ◽  
Ali Boyali ◽  
Sadayuki Tsugawa

This study investigated the necessity of automated vehicle control customization for individual drivers via a lane-changing experiment involving 35 subjects and an automated minivan. The experiment consisted of two automated driving conditions: one in which the subject was unable to override vehicle controls, the other with the option to override when the subject felt it was necessary. The automated vehicle drove at a speed of 40 km/h along three kinds of planned paths for lane changing, generated by Bezier curves; the distance required for lane changing was varied to obtain the preferred path of each subject. Various data obtained during driving, including vehicle trajectories and steering angles produced by subjects were logged. After automated driving, a questionnaire was administered to each subject. The experimental data showed that there was a statistically significant difference between comfort when the vehicle drove along the subject’s preferred path, and when it drove along other paths. The results of the questionnaire indicated that 46% of the subjects preferred the planned path that most closely resembled their own. In addition, quantitative analysis of driving data found that approximately 69% of the subjects preferred an automated driving control that resembled their own. However, it was also observed that certain subjects were open to multiple types of automated vehicle control. The experimental results indicate that drivers will not necessarily accept a single type of automated vehicle control, therefore customization will be necessary to improve acceptance of automated driving.


2019 ◽  
Author(s):  
Masato Gokan ◽  
Nobuhisa Tanaka ◽  
Yoshimi Furukawa ◽  
Tunetoshi Iwase ◽  
Taichi Hirowatari

2016 ◽  
Vol 49 (3) ◽  
pp. 285-290
Author(s):  
Dr.-Ing. Roman Henze ◽  
Dr.-Ing. Orhan Atabay ◽  
ass. Prof. Dr. Pongsathorn Raksincharoensak

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jaehyun Jason So ◽  
Sungho Park ◽  
Jonghwa Kim ◽  
Jejin Park ◽  
Ilsoo Yun

This study investigates the impacts of road traffic conditions and driver’s characteristics on the takeover time in automated vehicles using a driving simulator. Automated vehicles are barely expected to maintain their fully automated driving capability at all times based on the current technologies, and the automated vehicle system transfers the vehicle control to a driver when the system can no longer be automatically operated. The takeover time is the duration from when the driver requested the vehicle control transition from the automated vehicle system to when the driver takes full control of the vehicle. This study assumes that the takeover time can vary according to the driver’s characteristics and the road traffic conditions; the assessment is undertaken with various participants having different characteristics in various traffic volume conditions and road geometry conditions. To this end, 25 km of the northbound road section between Osan Interchange and Dongtan Junction on Gyeongbu Expressway in Korea is modeled in the driving simulator; the experiment participants are asked to drive the vehicle and take a response following a certain triggering event in the virtual driving environment. The results showed that the level of service and road curvature do not affect the takeover time itself, but they significantly affect the stabilization time, that is, a duration for a driver to become stable and recover to a normal state. Furthermore, age affected the takeover time, indicating that aged drivers are likely to slowly respond to a certain takeover situation, compared to the younger drivers. With these findings, this study emphasizes the importance of having effective countermeasures and driver interface to monitor drivers in the automated vehicle system; therefore, an early and effective alarm system to alert drivers for the vehicle takeover can secure enough time for stable recovery to manual driving and ultimately to achieve safety during the takeover.


Sign in / Sign up

Export Citation Format

Share Document