The fungiform papilla is a complex, multimodal, oral sensory organ

2021 ◽  
Vol 20 ◽  
pp. 165-173
Author(s):  
Charlotte M Mistretta ◽  
Robert M Bradley
Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1491-1505
Author(s):  
D F Lyman ◽  
B Yedvobnick

Abstract The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H+ transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H+ transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tao Tang ◽  
Christopher R. Donnelly ◽  
Amol A. Shah ◽  
Robert M. Bradley ◽  
Charlotte M. Mistretta ◽  
...  

AbstractDuring development of the peripheral taste system, oral sensory neurons of the geniculate ganglion project via the chorda tympani nerve to innervate taste buds in fungiform papillae. Germline deletion of the p75 neurotrophin receptor causes dramatic axon guidance and branching deficits, leading to a loss of geniculate neurons. To determine whether the developmental functions of p75 in geniculate neurons are cell autonomous, we deleted p75 specifically in Phox2b + oral sensory neurons (Phox2b-Cre; p75fx/fx) or in neural crest-derived cells (P0-Cre; p75fx/fx) and examined geniculate neuron development. In germline p75−/− mice half of all geniculate neurons were lost. The proportion of Phox2b + neurons, as compared to Phox2b-pinna-projecting neurons, was not altered, indicating that both populations were affected similarly. Chorda tympani nerve recordings demonstrated that p75−/− mice exhibit profound deficits in responses to taste and tactile stimuli. In contrast to p75−/− mice, there was no loss of geniculate neurons in either Phox2b-Cre; p75fx/fx or P0-Cre; p75fx/fx mice. Electrophysiological analyses demonstrated that Phox2b-Cre; p75fx/fx mice had normal taste and oral tactile responses. There was a modest but significant loss of fungiform taste buds in Phox2b-Cre; p75fx/fx mice, although there was not a loss of chemosensory innervation of the remaining fungiform taste buds. Overall, these data suggest that the developmental functions of p75 are largely cell non-autonomous and require p75 expression in other cell types of the chorda tympani circuit.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 733-752 ◽  
Author(s):  
Salim Abdelilah-Seyfried ◽  
Yee-Ming Chan ◽  
Chaoyang Zeng ◽  
Nicholas J Justice ◽  
Susan Younger-Shepherd ◽  
...  

Abstract The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rørth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system.


2015 ◽  
Vol 6 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Qing Wei ◽  
Rong Lei ◽  
Guohong Hu

2013 ◽  
Vol 23 (7) ◽  
pp. 581-587 ◽  
Author(s):  
Mathieu Cotton ◽  
Najate Benhra ◽  
Roland Le Borgne

Sign in / Sign up

Export Citation Format

Share Document