fungiform papilla
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 0)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Lala Chaimae Naciri ◽  
Mariano Mastinu ◽  
Roberto Crnjar ◽  
Iole Tomassini Barbarossa ◽  
Melania Melis

Several studies have used taste sensitivity to 6-n-propylthiouracil (PROP) to evaluate interindividual taste variability and its impact on food preferences, nutrition, and health. We used a supervised learning (SL) approach for the automatic identification of the PROP taster categories (super taster (ST); medium taster (MT); and non-taster (NT)) of 84 subjects (aged 18–40 years). Biological features determined from subjects were included for the training system. Results showed that SL enables the automatic identification of objective PROP taster status, with high precision (97%). The biological features were classified in order of importance in facilitating learning and as prediction factors. The ratings of perceived taste intensity for PROP paper disks (50 mM) and PROP solution (3.2 mM), along with fungiform papilla density, were the most important features, and high estimated values pushed toward ST prediction, while low values leaned toward NT prediction. Furthermore, TAS2R38 genotypes were significant features (AVI/AVI, PAV/PAV, and PAV/AVI to classify NTs, STs, and MTs, respectively). These results, in showing that the SL approach enables an automatic, immediate, scalable, and high-precision classification of PROP taster status, suggest that it may represent an objective and reliable tool in taste physiology studies, with applications ranging from basic science and medicine to food sciences.


Author(s):  
Christopher R. Donnelly ◽  
Archana Kumari ◽  
Libo Li ◽  
Iva Vesela ◽  
Robert M. Bradley ◽  
...  

AbstractThe fungiform papilla (FP) is a gustatory and somatosensory structure incorporating chorda tympani (CT) nerve fibers that innervate taste buds (TB) and also contain somatosensory endings for touch and temperature. Hedgehog (HH) pathway inhibition eliminates TB, but CT innervation remains in the FP. Importantly, after HH inhibition, CT neurophysiological responses to taste stimuli are eliminated, but tactile responses remain. To examine CT fibers that respond to tactile stimuli in the absence of TB, we used Phox2b-Cre; Rosa26LSL−TdTomato reporter mice to selectively label CT fibers with TdTomato. Normally CT fibers project in a compact bundle directly into TB, but after HH pathway inhibition, CT fibers reorganize and expand just under the FP epithelium where TB were. This widened expanse of CT fibers coexpresses Synapsin-1, β-tubulin, S100, and neurofilaments. Further, GAP43 expression in these fibers suggests they are actively remodeling. Interestingly, CT fibers have complex terminals within the apical FP epithelium and in perigemmal locations in the FP apex. These extragemmal fibers remain after HH pathway inhibition. To identify tactile end organs in FP, we used a K20 antibody to label Merkel cells. In control mice, K20 was expressed in TB cells and at the base of epithelial ridges outside of FP. After HH pathway inhibition, K20 + cells remained in epithelial ridges but were eliminated in the apical FP without TB. These data suggest that the complex, extragemmal nerve endings within and disbursed under the apical FP are the mechanosensitive nerve endings of the CT that remain after HH pathway inhibition.


2021 ◽  
Vol 20 ◽  
pp. 165-173
Author(s):  
Charlotte M Mistretta ◽  
Robert M Bradley

2020 ◽  
Vol 64 (2) ◽  
Author(s):  
Gabriela de Souza Reginato ◽  
Gabriela Klein Barbosa ◽  
Amanda Olivotti Ferreira ◽  
Bruno Gomes Vasconcelos ◽  
Rose Eli Grassi Rici ◽  
...  

The present study aimed to describe the structural and ultrastructural morphological characteristics of the lingual epithelium and the connective tissue cores (CTCs) of wild boar (Sus scrofa). The tongues were processed for light microscopy, scanning electron microscopy, and transmission electron microscopy. In this study, we revealed the filiform, fungiform, foliate, and vallate papillae. The filiform papilla is elongated with a conical shape and its CTC has a conical shape; the fungiform papilla is rounded with a dome-shape and its CTC is flower bud; the foliate papilla is formed by four pairs of epithelial folds and irregular grooves, and its CTC is thin with adjacent conjunctive projections, and taste buds and serous glands in the epithelial layer have been evidenced; and the vallate papilla is oval surrounded by a groove with increases of epithelium surface, and the CTC is formed by numerous connective projections lined. Also noted were serous gland and taste buds on the medial wall of the vallate papilla. The epithelium has the keratinized, granular, spinous, basal, and lamina propria layers. In conclusion, we found new descriptions and shapes of the CTCs of the lingual papillae. In addition, we demonstrated the epithelium structural characteristics, the nuclear distribution between the epithelial layers, and the ultrastructural aspects of the dorsal epithelium of the tongue.


2020 ◽  
Vol 45 (4) ◽  
pp. 261-273
Author(s):  
Takahiro Ogata ◽  
Yoshitaka Ohtubo

Abstract A mouse single taste bud contains 10–100 taste bud cells (TBCs) in which the elongated TBCs are classified into 3 cell types (types I–III) equipped with different taste receptors. Accordingly, differences in the cell numbers and ratios of respective cell types per taste bud may affect taste-nerve responsiveness. Here, we examined the numbers of each immunoreactive cell for the type II (sweet, bitter, or umami receptor cells) and type III (sour and/or salt receptor cells) markers per taste bud in the circumvallate and foliate papillae and compared these numerical features of TBCs per taste bud to those in fungiform papilla and soft palate, which we previously reported. In circumvallate and foliate taste buds, the numbers of TBCs and immunoreactive cells per taste bud increased as a linear function of the maximal cross-sectional taste bud area. Type II cells made up approximately 25% of TBCs irrespective of the regions from which the TBCs arose. In contrast, type III cells in circumvallate and foliate taste buds made up approximately 11% of TBCs, which represented almost 2 times higher than what was observed in the fungiform and soft palate taste buds. The densities (number of immunoreactive cells per taste bud divided by the maximal cross-sectional area of the taste bud) of types II and III cells per taste bud are significantly higher in the circumvallate papillae than in the other regions. The effects of these region-dependent differences on the taste response of the taste bud are discussed.


2019 ◽  
Vol 67 (7) ◽  
pp. 495-509
Author(s):  
Naoko Kanno ◽  
Saishu Yoshida ◽  
Takako Kato ◽  
Yukio Kato

Neuronatin ( Nnat) is expressed in the pituitary, pancreas, and other tissues; however, the function of NNAT is still unclear. Recent studies have demonstrated that NNAT is localized in the sex-determining region Y-box 2-positive stem/progenitor cells in the developing rat pituitary primordium and is downregulated during differentiation into mature hormone-producing cells. Moreover, NNAT is widely localized in subcellular organelles, excluding the Golgi. Here, we further evaluated NNAT-positive cells and intracellular localization in embryonic and postnatal rat tissues such as the pancreas, tongue, whisker hair follicle, and testis. Immunohistochemistry revealed that NNAT was localized in undifferentiated cells (i.e., epithelial basal cells and basement cells in the papillae of the tongue and round and elongated spermatids of the testis) as well as in differentiated cells (insulin-positive cells and exocrine cells of the pancreas, taste receptor cells of the fungiform papilla, the inner root sheath of whisker hair follicles, and spermatozoa). In addition, NNAT exhibited novel intracellular localization in acrosomes in the spermatozoa. Because the endoplasmic reticulum (ER) is excluded from spermatozoa and sarco/ER Ca2+-ATPase isoform 2 (SERCA2) is absent from the inner root sheath, these findings suggested that NNAT localization in the ER and its interaction with SERCA2 are cell- or tissue-specific properties.


2018 ◽  
Author(s):  
Naoko Kanno ◽  
Saishu Yoshida ◽  
Takako Kato ◽  
Yukio Kato

SummaryNeuronatin (Nnat) is expressed in the pituitary, pancreas, and other tissues; however, the function of NNAT is still unclear. Recent studies have demonstrated that NNAT is localized in the sex determining region Y-box 2-positive stem/progenitor cells in the developing rat pituitary primordium and is downregulated during differentiation into mature hormone-producing cells. Moreover, NNAT is widely localized in subcellular organelles, excluding the Golgi. Here, we further evaluated NNAT expression and intracellular localization in embryonic and postnatal rat tissues such as the pancreas, tongue, whisker hair follicle, and testis. Immunohistochemistry showed that NNAT was localized in undifferentiated cells (i.e., epithelial basal cells and basement cells in the papillae of the tongue and round and elongated spermatids of the testis) as well as in differentiated cells (insulin-positive cells and exocrine cells of the pancreas, taste receptor cells of the fungiform papilla, the inner root sheath of whisker hair follicles, and spermatozoa). Additionally, NNAT showed novel intracellular localization in acrosomes in the spermatozoa. Because the endoplasmic reticulum (ER) is excluded from spermatozoa and sarco/ER Ca2+-ATPase isoform 2 (SERCA2) is absent from the inner root sheath, these findings suggested that NNAT localization in the ER and its interaction with SERCA2 were cell-or tissue-specific properties.


2017 ◽  
Vol 10 (3) ◽  
pp. 60-68
Author(s):  
Stacey Reynolds ◽  
M. Emily Burgess ◽  
Nava Hymowitz ◽  
Derek J. Snyder ◽  
Shelly J. Lane

Sign in / Sign up

Export Citation Format

Share Document