A simple and efficient computing procedure of the stationary system-length distributions for GIX/D/c and BMAP/D/c queues

2021 ◽  
pp. 105564
Author(s):  
A.D. Banik ◽  
M.L. Chaudhry ◽  
Sabine Wittevrongel ◽  
Herwig Bruneel
Author(s):  
N. N. Druzhinin ◽  
A. A. Sarlybaev ◽  
O. I. Karandaeva ◽  
E.A. Khramshina
Keyword(s):  

Author(s):  
Chittaranjan Nayak ◽  
Mehdi Solaimani ◽  
Alireza Aghajamali ◽  
Arafa H. Aly

In this study, we have scrutinized the frequency gap generation by changing the geometrical parameters of a one-dimensional phononic crystal. For this purpose, we have calculated the transmission coefficient of an incident acoustic wave by using the transfer matrix method. We have retained and fixed the total length of the system and changed the system internal geometry not to increase the system length too much. Another reason was to adjust the phononic band gaps and get the desired transmission properties by finding the optimum internal geometry without increasing or decreasing the total length of phononic crystals. In addition, we also propose few structures with the opportunity of applications in acoustical devices such as sonic reflectors. Our results can also be of high interest to design acoustic filters in the case that transmission of certain frequencies is necessary.


1994 ◽  
Vol 08 (22) ◽  
pp. 3083-3094 ◽  
Author(s):  
V. DALLACASA

We have investigated the occurrence of superconductivity in a Fermi liquid of finite volume, under the assumption of a sharp surface, by solving numerically (at arbitrary length) and analytically (at the smallest lengths) the Cooper–BCS model. We find that this model can predict enhanced superconductivity with respect to the bulk BCS model when the system length L ≪ L0, in which L0 is a characteristic length. Under the same conditions the normal state is found to behave anomalously with respect to the conventional Fermi liquid, with a linear temperature dependence of the resistivity and marginal Fermi liquid properties. The results are used to implement a domain model of high T c superconductors.


1986 ◽  
Vol 108 (2) ◽  
pp. 391-395
Author(s):  
W. J. Dodds ◽  
E. E. Ekstedt

A series of tests was conducted to provide data for the design of premixing-prevaporizing fuel-air mixture preparation systems for aircraft gas turbine engine combustors. Fifteen configurations of four different fuel-air mixture preparation system design concepts were evaluated to determine fuel-air mixture uniformity at the system exit over a range of conditions representative of cruise operation for a modern commercial turbofan engine. Operating conditions, including pressure, temperature, fuel-air ratio, and velocity had no clear effect on mixture uniformity in systems which used low-pressure fuel injectors. However, performance of systems using pressure atomizing fuel nozzles and large-scale mixing devices was shown to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixture uniformity improved with increased system length, pressure drop, and number of fuel injection points per unit area. A premixing system compatible with the combustor envelope of a typical combustion system and capable of providing mixture nonuniformity (standard deviation/mean) below 15% over a typical range of cruise operating conditions was demonstrated.


1964 ◽  
Vol 86 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Thomas P. Goodman

To compute final correction masses for multispeed, multiplane balancing of rotating machinery, a least-squares computing procedure has been developed. This procedure uses plain least squares to minimize the rms residual vibration of selected points on the machinery foundation, and then uses weighted least squares to reduce the maximum residual vibration. The computations have been programmed for a digital computer.


Sign in / Sign up

Export Citation Format

Share Document