scholarly journals Evaluation of multiple stress corrosion crack interactions by in-situ Digital Image Correlation

2017 ◽  
Vol 128 ◽  
pp. 120-129 ◽  
Author(s):  
J. Bolivar ◽  
M. Frégonèse ◽  
J. Réthoré ◽  
C. Duret-Thual ◽  
P. Combrade
Author(s):  
Jonathan A. Duff ◽  
Thomas J. Marrow

The development and validation of predictive models for intergranular stress corrosion cracking requires knowledge of short crack growth kinetics in response to mechanical driving forces. A new experimental method for in-situ observation of the early stages of crack growth during stress corrosion cracking, via full field Digital Image Correlation, is described and data for crack growth development are presented. Intergranular stress corrosion cracks were nucleated in sensitised 304 stainless steel under static uniaxial flexural deflection, within a potassium tetrathionate environment. High resolution optical images of a 2mm by 2mm area are recorded through the test solution during the experiment. The raw images show no observable cracking. However, the high sensitivity of digital image correlation allows small crack opening displacements to be detected. The derived strain map of the sample surface thereby enables imaging of the cracks. Surface cracks with lengths exceeding approximately 30μm can be observed. Post processing of the strain maps is then used to track the development of the cracks.


2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


Author(s):  
Eugene S. Statnik ◽  
Codrutza Dragu ◽  
Cyril Besnard ◽  
Alexander J.G. Lunt ◽  
Alexey I. Salimon ◽  
...  

Porous ultra-high molecular weight polyethylene (UHMWPE) is a high performance bioinert polymer used in cranio-facial reconstructive surgery in procedures where relatively low mechanical stresses arise. As an alternative to much stiffer and costly polyether-ether-ketone (PEEK) polymer, UHMWPE finds further wide application in hierarchically structured hybrids for advanced implants mimicking cartilage, cortical and trabecular bone tissues within a single component. The mechanical behaviour of open-cell UHMWPE sponges obtained through sacrificial desalination of hot compression-moulded UHMWPE-NaCl powder mixtures shows a complex dependence on the fabrication parameters and microstructural features. In particular, similarly to other porous media it displays significant inhomogeneity of strain that readily localises within deformation bands that govern the overall response. In this article, we report advances in the development of accurate experimental techniques for operando studies of the structure-performance relationship applied to the porous UHMWPE medium with pore sizes of about 250 µm that are most well-suited for live cell proliferation and fast vascularization of implants. Samples of UHMWPE sponges were subjected to in situ compression using a micromechanical testing device within Scanning Electron Microscope (SEM) chamber, allowing the acquisition of high-resolution image sequences for Digital Image Correlation (DIC) analysis. Special masking and image processing algorithms were developed and applied to reveal the evolution of pore size and aspect ratio. Key structural evolution and deformation localisation phenomena were identified at both macro- and micro-structural levels in the elastic and plastic regimes. The motion of pore walls was quantitatively described, and the presence and influence of strain localisation zones were revealed and analysed using DIC technique.


Sign in / Sign up

Export Citation Format

Share Document