In-vitro corrosion and bioactivity behavior of tailored calcium phosphate-containing zinc oxide coating prepared by plasma electrolytic oxidation

2020 ◽  
Vol 173 ◽  
pp. 108781 ◽  
Author(s):  
Aidin Bordbar-Khiabani ◽  
Sema Ebrahimi ◽  
Benyamin Yarmand
RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 29189-29200 ◽  
Author(s):  
M. Bobby Kannan ◽  
R. Walter ◽  
A. Yamamoto ◽  
H. Khakbaz ◽  
C. Blawert

The PEO-CaP coating produced on magnesium metal using an unconventional electrolyte enhanced the degradation resistance and provided excellent cytocompatibility.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2094
Author(s):  
Yevheniia Husak ◽  
Joanna Michalska ◽  
Oleksandr Oleshko ◽  
Viktoriia Korniienko ◽  
Karlis Grundsteins ◽  
...  

The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.


2019 ◽  
Vol 84 (8) ◽  
pp. 915-923 ◽  
Author(s):  
Stevan Stojadinovic ◽  
Rastko Vasilic

Plasma electrolytic oxidation (PEO) process of Al?Zn?Si alloy in water solution containing 4 g L-1 sodium metasilicate at constant current density of 400 mA cm?2 was investigated. The species present in PEO micro-discharges and their ionization stages were identified using optical emission spectroscopy technique. The obtained PEO spectrum consists of atomic/ionic lines originating from the elements present both in the substrate (Al, Zn) and the electrolyte (Na, O, H). Apart from atomic and ionic lines, AlO band at 484.2 nm was also detected. Plasma electron number density diagnostics was performed from the H? line shape. The electron temperature of 4000?400 K was estimated by measuring the relative line intensities of zinc atomic lines at 481.05 and 636.23 nm. In addition, surface morphology, chemical and phase composition of oxide coatings were investigated by SEM-EDS and XRD. Oxide coating morphology is strongly dependent of PEO time. The elemental components of PEO coatings are Al, Zn, O and Si. The oxide coatings are partly crystallized and mainly composed of gamma phase of Al2O3.


2020 ◽  
Vol 382 ◽  
pp. 125224 ◽  
Author(s):  
Bruno Leandro Pereira ◽  
Gregory Beilner ◽  
Carlos Maurício Lepienski ◽  
Erico Saito Szameitat ◽  
Bor Shin Chee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document