Lekner summation for two-dimensional magnetic dipolar interaction energy

2006 ◽  
Vol 174 (4) ◽  
pp. 270-272 ◽  
Author(s):  
Ke Tang ◽  
Huaiwu Zhang ◽  
Zhiyong Zhong
2011 ◽  
Vol 689 ◽  
pp. 108-113
Author(s):  
Ke Tang ◽  
Hong Jie Yang ◽  
Lin Hong Cao ◽  
Hong Tao Yu ◽  
Jing Song Liu ◽  
...  

Most of simulations often require the calculation of all pairwise interaction in large ensembles of particles, such as N-body problem of gravitation, electrostatic interaction and magnetic dipolar interaction, etc. The main difficulty in the calculation of long-range interaction is how to accelerate the slow convergence of the occurring sums. In this work, we are interested in the dipolar interaction in the two dimensional (2D) magnetic dipolar nanoparticle systems, which have attracted much attention due to both their important technological applications such as high-density patterned recording media and their rich and often unusual experimental behaviours. We develop a high efficiency algorithm based on the Lekner method to evaluate the magnetic dipolar energy for such systems, where the simulation cell is periodically replicated in the plane. Taking advantage of the symmetry of the systems, the dipolar interaction energy is expressed by rapidly converging series of modified Bessel functions in our algorithm. We found that our algorithm is better than the traditional Ewald summation method in efficiency for the regular arrays. Moreover, two simple formulas are obtained to evaluate the self-energy, which is important in the simulation of the dipolar systems.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Rui Wang ◽  
Chunfeng Zhang ◽  
Bo Zhang ◽  
Yunlong Liu ◽  
Xiaoyong Wang ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 132
Author(s):  
Jon Gutiérrez ◽  
Virginia Vadillo ◽  
Ainara Gómez ◽  
Joanes Berasategi ◽  
Maite Insausti ◽  
...  

Recently, our collaborative work in the fabrication of a magnetorheological fluid (MRF) containing high magnetization FeCo nanoparticles (NPs, fabricated in our laboratories using the chemical reduction technique; MS = 212 Am2/kg) as magnetic fillers have resulted in a new MRF with superior performance up to 616.7 kA/m. The MRF had a yield stress value of 2729 Pa and good reversibility after a demagnetization process. This value competes with the best ones reported in the most recent literature. Nevertheless, the fabrication process of this type of fluid is not an easy task since there is a strong trend to the aggregation of the FeCo NPs due to the strong magnetic dipolar interaction among them. Thus, now we present the analysis of some aspects concerning the fabrication process of our FeCo NPs containing MRF, mainly the type of surfactant used to cover those NPs (oleic acid or aluminium stearate) and its concentration, and the procedure followed (mechanical and/or ultrasound stirring) to achieve a good dispersion of those magnetic fillers within the fluid.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1392
Author(s):  
David Gallina ◽  
G. M. Pastor

Structural disorder has been shown to be responsible for profound changes of the interaction-energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures. Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large basins of attraction from which the higher-energy metastable configurations are separated by only small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes with a large number of low-energy local minima separated by relatively large energy barriers. Consequently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics that is funnelled towards the global minimum, whereas the latter show a time evolution involving multiple time scales and trapping which is reminiscent of glasses. Although these general trends have been clearly established, a detailed assessment of the extent of these effects in specific nanostructure realizations remains elusive. The present study quantifies the disorder-induced changes in the interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a function of the magnetic configuration of the ensembles. Representative examples of weakly-disordered square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity graphs. The correlations between the characteristics of the energy landscapes and the Markovian dynamics of the various magnetic nanostructures are quantified by calculating the field-free relaxation time evolution after either magnetic saturation or thermal quenching and by comparing them with the corresponding averages over a large number of structural arrangements. Common trends and system-specific features are identified and discussed.


2018 ◽  
Vol 173 ◽  
pp. 06008 ◽  
Author(s):  
Eugene A. Koval ◽  
Oksana A. Koval

We report numerical investigation of the short range interaction influence on the two-dimensional quantum scattering of two dipoles. The model simulates two ultracold polar molecules collisions in two spatial dimensions. The used algorithm allows us to quantitatively analyse the scattering of two polarized dipoles with account for strongly anisotropic nature of dipolar interaction. The strong dependence of the scattering total cross section on the short range interaction radius was discovered for threshold collision energies. We also discuss differences of calculated scattering cross section dependencies for different polarisation axis tilt angles.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Y.D. Zhang ◽  
C. Esling ◽  
M. Calcagnotto ◽  
M.L. Gong ◽  
H. Klein ◽  
...  

A 12 T magnetic field has been applied to the annealing process of a 0.81%C-Fe (wt.%). It is found that the magnetic field shifts the eutectoid carbon content from 0.77 wt.% to 0.83 wt.%. The statistical thermodynamic calculations were performed to calculate the eutectoid temperature change by the magnetic field. Calculation shows that the increase of the eutectoid temperature by a 12 T field is 29∘C. Synchrotron radiation measurements were performed to measure the pole figures of the samples and were analyzed by MAUD to determine the bulk texture of the ferrite phase In the field-treated and non field-treated samples. Results show that although there is no specific preferred orientation appearing by applying the magnetic field, slight enhancement of (001) fiber component occurs in both the sample normal direction (ND) and the transverse direction (TD). This effect might be related to the magnetic dipolar interaction between Fe atoms in the transverse field direction.


Sign in / Sign up

Export Citation Format

Share Document