High Efficiency Algorithm for the Dipolar Interaction Energy of 2D Magnetic Nanoparticle Systems

2011 ◽  
Vol 689 ◽  
pp. 108-113
Author(s):  
Ke Tang ◽  
Hong Jie Yang ◽  
Lin Hong Cao ◽  
Hong Tao Yu ◽  
Jing Song Liu ◽  
...  

Most of simulations often require the calculation of all pairwise interaction in large ensembles of particles, such as N-body problem of gravitation, electrostatic interaction and magnetic dipolar interaction, etc. The main difficulty in the calculation of long-range interaction is how to accelerate the slow convergence of the occurring sums. In this work, we are interested in the dipolar interaction in the two dimensional (2D) magnetic dipolar nanoparticle systems, which have attracted much attention due to both their important technological applications such as high-density patterned recording media and their rich and often unusual experimental behaviours. We develop a high efficiency algorithm based on the Lekner method to evaluate the magnetic dipolar energy for such systems, where the simulation cell is periodically replicated in the plane. Taking advantage of the symmetry of the systems, the dipolar interaction energy is expressed by rapidly converging series of modified Bessel functions in our algorithm. We found that our algorithm is better than the traditional Ewald summation method in efficiency for the regular arrays. Moreover, two simple formulas are obtained to evaluate the self-energy, which is important in the simulation of the dipolar systems.

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Rui Wang ◽  
Chunfeng Zhang ◽  
Bo Zhang ◽  
Yunlong Liu ◽  
Xiaoyong Wang ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 132
Author(s):  
Jon Gutiérrez ◽  
Virginia Vadillo ◽  
Ainara Gómez ◽  
Joanes Berasategi ◽  
Maite Insausti ◽  
...  

Recently, our collaborative work in the fabrication of a magnetorheological fluid (MRF) containing high magnetization FeCo nanoparticles (NPs, fabricated in our laboratories using the chemical reduction technique; MS = 212 Am2/kg) as magnetic fillers have resulted in a new MRF with superior performance up to 616.7 kA/m. The MRF had a yield stress value of 2729 Pa and good reversibility after a demagnetization process. This value competes with the best ones reported in the most recent literature. Nevertheless, the fabrication process of this type of fluid is not an easy task since there is a strong trend to the aggregation of the FeCo NPs due to the strong magnetic dipolar interaction among them. Thus, now we present the analysis of some aspects concerning the fabrication process of our FeCo NPs containing MRF, mainly the type of surfactant used to cover those NPs (oleic acid or aluminium stearate) and its concentration, and the procedure followed (mechanical and/or ultrasound stirring) to achieve a good dispersion of those magnetic fillers within the fluid.


2005 ◽  
Vol 19 (13n14) ◽  
pp. 669-681 ◽  
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

Using the Lagrangian formalism we attempt to introduce a new Hamiltonian for fermions. On this basis we have evaluated the expectation values for the interaction energy between fermions via bosons. The interaction energy between two fermions via phonons becomes attractive in a degenerate fermion-gas. The interaction energy between two fermions via photons appears to be attractive in certain conditions. The self-energy of the fermion + boson system, e.g. polaron and polariton, was evaluated.


2018 ◽  
Vol 173 ◽  
pp. 06008 ◽  
Author(s):  
Eugene A. Koval ◽  
Oksana A. Koval

We report numerical investigation of the short range interaction influence on the two-dimensional quantum scattering of two dipoles. The model simulates two ultracold polar molecules collisions in two spatial dimensions. The used algorithm allows us to quantitatively analyse the scattering of two polarized dipoles with account for strongly anisotropic nature of dipolar interaction. The strong dependence of the scattering total cross section on the short range interaction radius was discovered for threshold collision energies. We also discuss differences of calculated scattering cross section dependencies for different polarisation axis tilt angles.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 909
Author(s):  
Sangita Bera ◽  
Luca Salasnich ◽  
Barnali Chakrabarti

The concept of spontaneous symmetry breaking and off-diagonal long-range order (ODLRO) are associated with Bose–Einstein condensation. However, as in the system of reduced dimension the effect of quantum fluctuation is dominating, the concept of ODLRO becomes more interesting, especially for the long-range interaction. In the present manuscript, we study the correlation dynamics triggered by lattice depth quench in a system of three dipolar bosons in a 1D triple-well optical lattice from the first principle using the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). Our main motivation is to explore how ODLRO develops and decays with time when the system is brought out-of-equilibrium by a sudden change in the lattice depth. We compare results of dipolar bosons with contact interaction. For forward quench ( V f > V i ) , the system exhibits the collapse–revival dynamics in the time evolution of normalized first- and second-order Glauber’s correlation function, time evolution of Shannon information entropy both for the contact as well as for the dipolar interaction which is reminiscent of the one observed in Greiner’s experiment [Nature, 415 (2002)]. We define the collapse and revival time ratio as the figure of merit ( τ ) which can uniquely distinguish the timescale of dynamics for dipolar interaction from that of contact interaction. In the reverse quench process ( V i > V f ) , for dipolar interaction, the dynamics is complex and the system does not exhibit any definite time scale of evolution, whereas the system with contact interaction exhibits collapse–revival dynamics with a definite time-scale. The long-range repulsive tail in the dipolar interaction inhibits the spreading of correlation across the lattice sites.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Y.D. Zhang ◽  
C. Esling ◽  
M. Calcagnotto ◽  
M.L. Gong ◽  
H. Klein ◽  
...  

A 12 T magnetic field has been applied to the annealing process of a 0.81%C-Fe (wt.%). It is found that the magnetic field shifts the eutectoid carbon content from 0.77 wt.% to 0.83 wt.%. The statistical thermodynamic calculations were performed to calculate the eutectoid temperature change by the magnetic field. Calculation shows that the increase of the eutectoid temperature by a 12 T field is 29∘C. Synchrotron radiation measurements were performed to measure the pole figures of the samples and were analyzed by MAUD to determine the bulk texture of the ferrite phase In the field-treated and non field-treated samples. Results show that although there is no specific preferred orientation appearing by applying the magnetic field, slight enhancement of (001) fiber component occurs in both the sample normal direction (ND) and the transverse direction (TD). This effect might be related to the magnetic dipolar interaction between Fe atoms in the transverse field direction.


Sign in / Sign up

Export Citation Format

Share Document