Quantum Dissipative Dynamics (QDD): A real-time real-space approach to far-off-equilibrium dynamics in finite electron systems

2021 ◽  
pp. 108155
Author(s):  
P.M. Dinh ◽  
M. Vincendon ◽  
F. Coppens ◽  
E. Suraud ◽  
P.-G. Reinhard
Author(s):  
K. Chowdhury ◽  
S. Ghosh ◽  
M. Mukherjee

AbstractThe direct method program SAYTAN has been applied successfully to redetermine the structure of cytochrome c


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1148
Author(s):  
Jewgeni H. Dshalalow ◽  
Ryan T. White

In a classical random walk model, a walker moves through a deterministic d-dimensional integer lattice in one step at a time, without drifting in any direction. In a more advanced setting, a walker randomly moves over a randomly configured (non equidistant) lattice jumping a random number of steps. In some further variants, there is a limited access walker’s moves. That is, the walker’s movements are not available in real time. Instead, the observations are limited to some random epochs resulting in a delayed information about the real-time position of the walker, its escape time, and location outside a bounded subset of the real space. In this case we target the virtual first passage (or escape) time. Thus, unlike standard random walk problems, rather than crossing the boundary, we deal with the walker’s escape location arbitrarily distant from the boundary. In this paper, we give a short historical background on random walk, discuss various directions in the development of random walk theory, and survey most of our results obtained in the last 25–30 years, including the very recent ones dated 2020–21. Among different applications of such random walks, we discuss stock markets, stochastic networks, games, and queueing.


2016 ◽  
Vol 14 (6) ◽  
pp. 203-205
Author(s):  
Shiho TANAKA ◽  
Mitsuki TOOGOSHI ◽  
Yasunari ZEMPO

2015 ◽  
Vol 640 ◽  
pp. 012066 ◽  
Author(s):  
Y Zempo ◽  
N Akino ◽  
M Ishida ◽  
E Tomiyama ◽  
H Yamamoto
Keyword(s):  

2019 ◽  
Vol 5 (3) ◽  
pp. eaat7158 ◽  
Author(s):  
Sooyoung Jang ◽  
Robert Kealhofer ◽  
Caolan John ◽  
Spencer Doyle ◽  
Ji-Sook Hong ◽  
...  

Our understanding of correlated electron systems is vexed by the complexity of their interactions. Heavy fermion compounds are archetypal examples of this physics, leading to exotic properties that weave magnetism, superconductivity and strange metal behavior together. The Kondo semimetal CeSb is an unusual example where different channels of interaction not only coexist, but have coincident physical signatures, leading to decades of debate about the microscopic picture describing the interactions between the f moments and the itinerant electron sea. Using angle-resolved photoemission spectroscopy, we resonantly enhance the response of the Ce f electrons across the magnetic transitions of CeSb and find there are two distinct modes of interaction that are simultaneously active, but on different kinds of carriers. This study reveals how correlated systems can reconcile the coexistence of different modes on interaction—by separating their action in momentum space, they allow their coexistence in real space.


1979 ◽  
Vol 20 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Pierre F. Maldague
Keyword(s):  

2009 ◽  
Vol 08 (04) ◽  
pp. 561-574 ◽  
Author(s):  
MICHAEL MUNDT

The linear and nonlinear response of Si 4 and Na 4 to an external perturbation is investigated in the framework of time-dependent density-functional theory. The time-dependent Kohn–Sham equations, which are the central equations in this approach, are solved in real space and real time. A parallelized implementation to solve these nonlinear, one-particle Schrödinger equations is presented. In contrast to Na 4, Si 4 shows high-harmonic generation far beyond the cut-off predicted by the quasiclassical model and predictions for extended systems.


2008 ◽  
Vol 594 ◽  
pp. 415-436
Author(s):  
Yuan Ming Cheng ◽  
Chien Hsun Kuo ◽  
Jih Hua Chin

Parallel mechanisms could be hardly used in contour tracking because of their mechanism features. This study proposed a link-space real time contour tracking for a 3 DOF (Z、α and β) hydraulic parallel mechanism. The essence of this approach is to convert control points of command trajectory to link space by inverse kinematics. A real-time interpolator was created and the multi-axis cross-coupled pre-compensation control (MCCPM) was constructed for link-space contour tracking. It was shown that a contour-accurate trajectory tracking could be performed which was impossible in the original Z-α-β space. Other advantages of this link-space approach were time efficiency and the uniform tracking velocity.


Sign in / Sign up

Export Citation Format

Share Document