scholarly journals Merlin++, a flexible and feature-rich accelerator physics and particle tracking library

2021 ◽  
pp. 108204
Author(s):  
Robert B. Appleby ◽  
Roger J. Barlow ◽  
Dirk Krücker ◽  
James Molson ◽  
Scott Rowan ◽  
...  
1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


Author(s):  
Sandip Tiwari

This chapter explores electromagnetic-matter interactions from photon to extinction length scales, i.e., nanometer of X-ray and above. Starting with Casimir-Polder effect to understand interactions of metals and dielectrics at near-atomic distance scale, it stretches to larger wavelengths to explore optomechanics and its ability for energy exchange and signal transduction between PHz and GHz. This range is explored with near-quantum sensitivity limits. The chapter also develops the understanding phononic bandgaps, and for photons, it explores the use of energetic coupling for useful devices such as optical tweezers, confocal microscopes and atomic clocks. It also explores miniature accelerators as a frontier area in accelerator physics. Plasmonics—the electromagnetic interaction with electron charge cloud—is explored for propagating and confined conditions together with the approaches’ possible uses. Optoelectronic energy conversion is analyzed in organic and inorganic systems, with their underlying interaction physics through solar cells and its thermodynamic limit, and quantum cascade lasers.


Author(s):  
Eric M. Furst ◽  
Todd M. Squires

The fundamentals and best practices of multiple particle tracking microrheology are discussed, including methods for producing video microscopy data, analyzing data to obtain mean-squared displacements and displacement correlations, and, critically, the accuracy and errors (static and dynamic) associated with particle tracking. Applications presented include two-point microrheology, methods for characterizing heterogeneous material rheology, and shell models of local (non-continuum) heterogeneity. Particle tracking has a long history. The earliest descriptions of Brownian motion relied on precise observations, and later quantitative measurements, using light microscopy.


Sign in / Sign up

Export Citation Format

Share Document