Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions

2014 ◽  
Vol 593 ◽  
pp. 122-127 ◽  
Author(s):  
Yinlin Lei ◽  
Fei Chen ◽  
Yunjie Luo ◽  
Long Zhang
2020 ◽  
pp. 114790
Author(s):  
Haya A. Abubshait ◽  
Ahmed A. Farag ◽  
Mohamed A. El-Raouf ◽  
Nabel A. Negm ◽  
Eslam A. Mohamed

2019 ◽  
Vol 18 (02) ◽  
pp. 1850019
Author(s):  
Huiyuan Yu ◽  
Jiayi Zhu ◽  
Hongbo Ren ◽  
Shuxin Liu

Graphene-based aerogels with a three-dimensional interconnected network were fabricated via the hydrothermal self-assembly and thermal-annealing process. The aerogels were characterized by means of scanning electron microscopy and atomic absorption spectroscopy. The graphene-based aerogels showed highly porous structure and adsorption capacity for heavy metal ions. Thus, they would be the promising materials for removal of heavy metal ions from water.


RSC Advances ◽  
2014 ◽  
Vol 4 (47) ◽  
pp. 24653-24657 ◽  
Author(s):  
Xuezhong Gong ◽  
Yunlong Bi ◽  
Yihua Zhao ◽  
Guozhen Liu ◽  
Wey Yang Teoh

Facile functionalization of graphene oxide sheets on gold surface results in complexation-enhanced electrochemical detection of heavy metal ions, shown here for Pb2+, Cu2+ and Hg2+, with improved detection limits by two orders of magnitude relative to the control electrode.


Author(s):  
Xiaoyun Xu ◽  
Xiaoyi Lv ◽  
Fei Tan ◽  
Yanping Li ◽  
Chao Geng ◽  
...  

Abstract An efficient and sensitive electrochemical sensor for simultaneous detection of heavy metal ions was developed based on furfural/reduced graphene oxide composites (FF/RGO). The preparation of FF/RGO were performed through a one-step high-pressure assisted hydrothermal treatment, which is recommended as a green, convenient, and efficient way for the reduction of graphene oxide and the production of FF/RGO composites. RGO not only serves as the skeleton for furfural loading but also improves the conductivity of the composites in the matrix. FF/RGO with large specific surface area and abundant oxygen-containing functional groups was used to provide more binding sites for the effificient adsorption of heavy-metal ions due to the interaction between hydrophilic groups (-COOH, -OH, and -CHO) and metal cations. The developed sensor showed identifiable electrochemical response toward the heavy metal ions separately and simultaneously, exhibiting superior stability, outstanding sensitivity, selectivity and excellent analytical performance. Impressively, the sensor developed in this experiment has been successfully applied to the simultaneous determination of various heavy metal ions in actual samples, which has definitely exhibited a promising prospect in practical application.


2019 ◽  
Vol 136 (43) ◽  
pp. 48156 ◽  
Author(s):  
Dejian Liu ◽  
Congcong Ding ◽  
Fangting Chi ◽  
Ning Pan ◽  
Jun Wen ◽  
...  

2019 ◽  
Vol 216 ◽  
pp. 119-128 ◽  
Author(s):  
Zhengguo Wu ◽  
Weijie Deng ◽  
Wei Zhou ◽  
Jiwen Luo

Sign in / Sign up

Export Citation Format

Share Document